CS 258: Quantum Cryptography (Fall 2025)
Homework 2 (100 points)

1 Problem 1 (25 points)

Wiesner’s quantum money scheme used the set of states {|0),]1),|+),|—)}. We said in class that such states
can be copied with probability 3/4, in the sense that verifying both copies will accept with that probability.
In order to get the success probability of a would-be cloner down to be exponentially-small, we actually have
banknotes be many independent states from the set. Effectively, doing so is utilizing higher-dimensional
states over the joint system in order to decrease the adversary’s success probability.

A natural question is whether we can get the adversary’s success probability down by using a different
set of states, but still keeping the states as 2-dimensional. You will show that this does not help very much

Consider the unitary U defined over a 3-qubit system:

2 % x x 0 *x *x %

0 *« *x x 0 *x % x

0 * * * 1 * * x

1 1 % % % 0 * *x %
U_% 0 = * *x 1 % * %
1 % *x % 0 % x x

0 * * x 0 * x *

0 *x % x 2 *x *x x

The exact choice of * doesn’t matter, as long U is unitary. Notice that the rows and columns are indexed
by triples of bits {000, 001,010,011, 100, 101,110,111}, so that the two specified columns correspond to 000
and 100.

Now consider any single-qubit state [1)). Any such state can be written as |¢)) = a|0) + 3|1) for complex
numbers «, 3 such that |a|? + |8]? = 1.

Consider applying U to [¢)]|0)|0), giving U|y)|0)|0), and measuring only the very last qubit, resulting
in measurement outcome b. Let pg be the probability b = 0 and p; the probability b = 1. Then the state
collapses to |¢p)|b) for some quantum states |¢y).

Part (a). 5 points. Compute pg, p; as functions of «, .

Part (b). 10 points. Use the rules of partial measurements to write out expressions for |¢g) and |¢1) as
functions of a, 3.

Part (c). 10 points. We will now claim that the states |¢g) and |¢1) are “close” in some sense to |¢)[1)).
In particular, the probability that |¢;) is accepted as a clone of |¢) is |((1](1/])|$s)|?. The overall probability
of success of this attack is therefore

Pauce = pol (W10} * + pr| (1 (1) 61)]?

Show that Pscc = 2/3, independent of o, 8. [Hint: You may fine this identity useful: (z+y)3 = 23+ 322y +
3ay® +y°).

Remark 1. That completes Problem 1. Note that you gave an attack that works with probability 2/3. But in
class, we claimed that Wiesner’s scheme has an optimal attack probability of 3/4. This is because Wiesner’s
scheme uses only real-values states, and it turns out that this allows for a slightly better attack. The following
unitary gives an attack success probability of 3/4 for any real-values states, showing that Wiesner’s scheme
is optimal among real-valued states.

3 x x x 0 % x

0 = * *x 1 % *x x%

0 = * *x 1 % *x x%

1 1 « *x x 0 * *x
V:\/ﬁ 0 = * x 1 * =x =
1 % x *x 0 % % %

1 % x *x 0 % % =%

0 * * * 3 * *

2 Problem 2 (20 points)

Here, you will show that any efficient classical circuit can be simulated by an efficient quantum circuit.
In particular, given a classical circuit C, you will construct a quantum circuit implementing the unitary
Uclz,y) = |z,y & C(z)).

A crucial ingredient is the Toffoli, also called the CCNOT gate. It is defined over three qubits as
CCNOTla, b, c) = |a,b,c @ (ab)). In matrix notation, it looks like:

1

CCNOT =

Part (a). 10 points. Let C be any classical circuit made of AND,NOT gates (OR gates can be realized
by AND and NOT gates). Let ¢ be the total number of gates, n the number of input bits, and m the number
of output bits.

Let Dc(x) be the function that ouputs the values of all internal and output wires in C(x) (there
are ¢ such wires, one for each gate in the circuit). Construct a quantum circuit for Up,. In particular,
Upglz,0m,09"™) = |z, C(z), w(x)), where w(x) is the list of wire values for all internal wires in the circuit.
H

You circuit will contain only CCNOT, CNOT, and NOT gates. The number of such gates is at most O(q).
Remember that, since this is a quantum circuit, wires cannot be branched, and all wires coming out of a
gate must either go into another gate or be output wires.

[Hint: Suppose you have three qubits in the state |a,b,0). How can you put aANDb into the third qubit,
using a CCNOT gate? How about putting NOT(a) = 1 — a into the third qubit, using a CNOT ?

Part (b). 5 points. Let D(z) be a function, and consider a function E(x) = g(x, D(z)) for some function
g. Explain how you can construct Ug using a constant number of evaluations to U, and Up, plus potentially
a few CNOT gates, swapping a few wires, and a few ancilla registers which start at |Oql> and are returned
to |Oq/). [Hint: Consider first applying Up, and then U, to the result. Some of the wires will now contain
the result of E(x) = g(x, D(x)). But there will also be wires containing the value of D(x). How might you
return these wires to 07]

Part (c). 5 points. Explain how to take your implementation of Up, from Part (a), and turn it into Uy,
using the result of Part (b).

Remark 2. Above, used CCNOT, which is a 3-qubit gate. It turns out that it is possible to construct CCNOT
with just a constant number of CNOT and 1-qubit gates. Thus, we can implement the circuits above using
CNOT and 1-qubit gates with a constant-factor overhead.

3 Problem 3 (30 points)

Consider a function f : {0,1}™ — {0,1} such that there are exactly K points such that f(z) = 1. In class,
we saw how Grover’s algorithm can find a random such point using O(4/2"/K) evaluations of f

Part (a). 15 points. Show that all K points can be found using O(v/2"K) evaluations of f. (note that
K is in the numerator).

[Hint: One thing that doesn’t quite work is to just run Grover’s algorithm many times until all K distinct
points are found. Since the points outputted by Grover’s algorithm are random accepting points, eventually
all points will be found. The number of tries necessary is known as the Coupon Collector’s problem, and it
is known that the number of trials needed is ©(K log K), which gives an overall run-time of O(2"K log K).
To shave of the log factor, you will only run Grover for K times, but need to ensure that all the K points
are distinct. You will accomplish this by modifying running Grover on a modified function f', and each run
of Grover will use a different f'. f' is derived from f, and you can implement Uy from Uy per Problem 2

Part (b). You will find the following useful: Zfil i~Y2 = O(K?).].

Part (b). 15 points. Let g: {0,1}" — {0,1}" be a function with the promise that, for each z € {0,1}™,
there is exactly one 2’ # x such that g(x) = g(2’). Your goal is to find such a pair (x,).

To do so, first evaluate g on T random points, for some 7" that will be chosen later. Let L be the list of
inputs queried. If L contains a pair z # 2’ with g(z) = g(a'), then we are done.

Otherwise, use Grover’s algorithm to find an 2’ ¢ L such that there exists x € L satisfying g(z') = g(z).
To do so, define a function f such that f(2’) = 1 if and only if 2’ is such a point. f can be evaluated by
making a call to g. Then run Grover’s algorithm on f to find such an z’. Once you have z’, you just look in
the list L for the corresponding x, and output (z,z’). Note that f will have the evaluations g(z) that you
already computed for all x € L included in its description. How long does Grover’s algorithm take on this f
(in terms of the number of times is must evaluate ¢g)? Call this time 7", which will be a function of T" and
2™, (You may assume searching through a list of values takes constant time)

Finally, choose T to optimize the overall running-time. What is the overall running time of the algorithm?
You only need to count the number of evaluations of Uj,.

Remark 3. Your algorithm will technically be calling Uy for f that are a modification of g. But per Problem
2 Part (b), we can implement Uy by making queries to Uy. We are only counting the total number of queries
to Uy, since this will be the dominant cost.

Remark 4. The best classical algorithm for finding x,x’ simply tries a number of random guesses until it
finds one. This takes time O(+/2™) to find such a pair (each pair has a 2~™ probability of being having the
same output, and with O(v/2") queries you get O(2™) pairs). This is known as the birthday paradoz.

OPTIONAL BONUS: Part (c). 5 points. Suppose instead g is 3-to-1, meaning for every « € {0,1}",
there are exactly two inputs o/, 2" such that g(z) = g(z') = g(2”). Give a quantum algorithm for finding
such a triple (z,2’,2") in time O(23"/7).

1Technically, this is only with overwhelming probability, but you may ignore that for this question.

Remark 5. The best classical algorithm takes time 0(22”/3): each triple has a probability 272" of having
the same outputs, and 0(22”/3) queries gives a total of O(22") triples. You will receive partial bonus points
for any algorithm that does better than O(2%"/3), with mazimum points for O(2°™/7), which turns out to be
optimal.

4 Problem 4 (10 points)

The hidden shift problem is closely related to the hidden subgroup/period finding problem. Here, we have
some group G (for this problem, G is abelian and written additively), and two functions fy, f1 : G — {0, 1}*.
The promise is that f1(z) = fo(z + s) for some hidden s € G. The goal is to find s.

Part (a). 5 points. Show that if G = Z%, then the hidden shift problem can be solved in polynomial
time. You may use period-finding (Simon’s or Shor’s algorithms) as a black box.

Part (b). 5 points. Now consider the case G # Z} for any n. One might hope that, as with the hidden
subgroup/period-finding problem, hidden shift can still be solved in quantum polynomial time. However,
this appears to be false. Explain why there is no obvious way to use period finding to solve Hidden Shift in
this case, despite your answer to Part (a).

5 Problem 5 (15 points)

The Evan-Mansour cipher takes a public permutation P : {0,1}" — {0,1}", and turns it into a private-
key encryption scheme. The key is a pair (ko,ko) € ({0,1}")2, and the encryption of a message m is
Enc((ko, ko), m) = ko @ P(ko @& m). Decryption is straightforward using P~1.

The construction cannot be CPA secure (do you remember why?). However, it could plausibly still
have some weaker form of security. In this problem, you will show that if quantum queries are made to
Enc((ko, k1), -), then it is possible to actually recover the key ko, k1, showing that no security is possible
under such queries.

Part (a). 10 points. Suppose you are given quantum oracle access to the unitary U, where g(m) =
Enc((ko, k1), m) for unknown keys ko, k1. Construct a function f(m) which uses g and P as a sub-routine,
with the guarantee that f(m @ ko) = f(m).

[Hint: Think first about the case ky = 0™, and compare Enc((ko, k1), m) to P(m).]

Thus, running Simon’s algorithm on f will give ky. Complete the attack by finding k1 once kg is known.
Note that technically, Simon’s algorithm required f(x) # f(y) for y ¢ {x,x ® kg), but we will ignore this
issue since this will be true for “most” such z,y.

Part (b). 5 points. A simple fix to the above is to replace + with addition modulo 2", interpreting
strings {0, 1}" as integers [0,1,---,2" — 1] in the natural way. Explain why Simon’s and Shor’s algorithms
don’t work straightforwardly with this change.

	Problem 1 (25 points)
	Problem 2 (20 points)
	Problem 3 (30 points)
	Problem 4 (10 points)
	Problem 5 (15 points)

