CS 258: Quantum Cryptography (Fall 2025)
Homework 1 (100 points)

1 Problem 1 (20 points)

Recall that CPA security is defined using negligible functions. Informally, a function is negligible if it is
smaller than any inverse polynomial. There are a few ways to define negligible functions. Here is the most
common one:

Definition 1. A function f: N — R is negligible if, for any polynomial p > 0, there exists an Np € N such
that |f(X)| < 1/p(A) for all A > N,
Part (a). 12 points. Let p > 0 be an arbitrary polynomial function, and f, g be two negligible functions.
Prove the following (3 points each):
(i) f+ g is negligible
(ii) pf is negligible
(iii) 1/p — f is not negligible
(iv) If h(A) is a function such that there exists an N € N such that |h(A)| < |f(A)] for all A > N, then h(\)
is also negligible. In other words, any function smaller than a negligible function is also negligible.
Part (b). 6 points. For each of the following functions, decide if they are negligible or not, with a brief
(informal is acceptable) explanation for why. (1 point each)
(i) fi(\) =100\ x 27
(i) fu(A) =770
1/A  if Ais even
iii) fisi(A) =
(i) fuis() {1/2A if X is odd
(iv) fin(A) = A~ loga(logs(logs ()
(V) fo(A) =27 Vieel
(vi) foi(A) =A"1 =100 x 27*

Part (c). 2 points Give an example of a negligible function f and a non-negligible function g such that
f/g is non-negligible.



OPTIONAL BONUS: Part (d). 3 points. Let fi, f2,--- be an infinite sequence of negligible functions.
Define F(\) = Z?zl fi(A\). One might expect that, since adding negligible functions produces negligible
functions, F'()\) is negligible. However, this is in general not the case. Give a sequence of functions f1, fo,- - -,
each of which are negligible, but for which F'(A) is non-negligible.

Remark 2. Note that by iteratively applying Problem 1.a.i, the sum of any constant number of negligible
functions is negligible. However, once the number of functions becomes non-negligible, the sum is technically
not guaranteed to be negligible.

2 Problem 2 (30 points)

Consider the following variant of CPA security for public key encryption.

Definition 3 (Public key encryption, CPA security). For functions qi1(\),q2(N\), a public key encryption
scheme (Gen, Enc, Dec) is (q1,g2)-CPA-secure if, for all probabilistic polynomial time interactive algorithms
A, there exists a “negligible” function e(\) < A=) such that |Pr[Wy(A\) = 1] — Pr[iWi(\) = 1]| < e(N),
where Wy, is the event that A outputs 1 in the following experiment:

e Run (sk,pk) < Gen(1%), and give pk to A.
e A now can make a polynomial number of queries. The queries come in one of two types:

— Encryption Query. Here, A sends an arbitrary message m € {0,1}*, and in response receives
¢ + Enc(pk,m).

— Challenge Query. Here, A sends two messages mg, m; € {0,1}* of the same length. In
response, A receives ¢ <— Enc(pk,m;).

The queries can happen in any order, except that the total number of encryption queries is at most
@1(\), and the total number of challenge queries is at most ga(\).

o A outputs a bit b'.

We call |Pr[Wo(A) = 1] — Pr[W1(M\) = 1]| the advantage of A. We say that (Gen, Enc, Dec) is (poly, g2)-
CPA-secure if it is (q1,q2)-CPA secure for any polynomial q1. We likewise define (g1, poly)-CPA-secure and
(poly, poly)-CPA-secure.

Observe that the definition we saw in class is the same as (0, 1)-CPA-secure.
Part (a). 5 points. Show that any public key encryption scheme is (poly, 0)-CPA secure.

Part (b). 5 points. Let (Gen, Enc, Dec) be a (poly, poly)-CPA-secure public key encryption scheme, but
which is only capable of encrypting a single bit (as opposed to arbitrary bit strings). A simple way to extend
it to arbitrary bit-strings is to encrypt bit-by-bit: Enc’(pk,m) = (Enc(pk,mg), Enc(pk,m1),--- , Enc(pk,my))
where m = (my,---,my) € {0,1}*. Decryption Dec’ is then performed piece-by-piece as well. Show that
(Gen, Enc’, Dec’) is also (poly, poly)-CPA-secure. To do so, start with any supposed adversary A for the
(poly, poly)-CPA-security of (Gen, Enc’,Dec’), and build from A an adversary B for the (poly, poly)-CPA-
security of (Gen, Enc, Dec). The advantage of B should be equal to the advantage of A. By the (poly, poly)-
CPA-security of (Gen, Enc, Dec), the advantage of B is negligible, and thus so is the advantage of A.

Part (c). 5 points. Show that, for any polynomials ¢, g2, if (Gen, Enc, Dec) is (g1, ¢2)-CPA-secure, then
it is also (¢}, ¢4)-CPA-secure for any ¢j(A) < ¢1(A\) and ¢4(A) < g2(A). To do so, start with any supposed
adversary A for the (¢}, ¢})-CPA-security of (Gen, Enc,Dec), and build from A an adversary B for the
(q1,q2)-CPA-security of (Gen, Enc, Dec). The advantage of B should be equal to the advantage of A. By the
(q1,q2)-CPA-security of (Gen, Enc, Dec), the advantage of B is negligible, and thus so is the advantage of A.
Your proof should work for any possible polynomials ¢1, g2, g1, ¢5 as long as ¢;(A) < g1(A) and ¢5(N) < ga(A).



Part (d). 5 points. Show that if (Gen, Enc, Dec) is (0, ¢2)-CPA-secure, then it is (g1, g2)-CPA-secure for
any polynomial ¢; (and in particular, that it is (poly, g2)-CPA-secure). To do so, start with any polynomial
g1 and any supposed adversary A for the (qi,¢g2)-CPA-security of (Gen, Enc,Dec), and build from A an
adversary B for the (0, g2)-CPA-security of (Gen, Enc, Dec).

Part (e). 10 points. Show that if (Gen, Enc, Dec) is (g1, 1)-CPA-secure, then it is (q1 — g2 + 1, ¢2)-CPA-
secure for any polynomial g1 > g2 (and in particular, that it is (0, poly)-CPA-secure). To do so, you will
use something called a hybrid argument. Let go be any polynomial and A any supposed adversary for the
(g1 — ¢2 + 1, g2)-CPA-security of (Gen, Enc, Dec). Then, for i =0, -, g2(A), define “hybrid experiments” H;
which are identical to the experiment in Definition [3] except where challenge queries are answered as follows:

e Challenge Query. Here, A sends two messages mf, mj € {0,1}* of the same length. Suppose the
current query is the jth challenge query. In response, A receives

- Enc(pk,mj) ifj<i
Enc(pk,m§) if j >4

Define W/ () as the probability that A outputs 1 in Hybrid H;. First, explain that Wj(\) = W, W(;Q()\) N\ =
Wi.

Next, show that for each i = 1,---,g2(N), |W/(A) — W/_;(N\)| must be negligible: to do so, devise an
algorithm B; for the (g1, 1)-CPA-security of (Gen, Enc, Dec), and show that the advantage of B; is exactly
W) — W (V).

Finally, use the triangle inequality to conclude that |[Wy(A) — Wi (A)| is negligible. For this, you may
assume that the sum of polynomially-many negligible functions is still negligible.

Remark 4. Technically, the above proof does not work (see the bonus question Problem 1d), since summing
a non-constant number of negligible functions is not necessarily negligible. However, the proof can be made
to work by actually defining a single adversary B which chooses a random i and runs B;. There will be a
single negligible advantage function for this B, which can be shown to be equal to the advantage of A divided
by g2(X). By Problem 1.a.ii, we can then conclude the advantage of A is actually negligible. This subtle issue
is almost never a real problem, and is largely ignored even in serious cryptography publications since it is
stmpler to just consider qa(\) adversaries B;. We will ignore it as well in this course, and simply pretend
that the sum of polynomially-many negligible functions is still negligible.

Remark 5. Typically, (poly, poly)-CPA-secure encryption is what is actually desired in practice. Problem
2 shows that, for public key encryption, it suffices to consider the definition of CPA-security seen in class
((0,1)-CPA-secure), as it is equivalent to the desired notion. In this course, we will therefore largely focus

n (0,1)-CPA-security. It also shows that it suffices to consider encryption for single-bit messages, which
can then be generically extended to many bits.

3 Problem 3 (20 points)

It is straightforward to generalize public key encryption as defined in class as well as Definition [3] to the case
of symmetric key cryptosystems. Here, there is no Gen, and distinct public and secret key. Instead, Enc, Dec
take as input a key k € {0,1}*, and security is defined by choosing k uniformly random in {0, 1}*.

Part (a). 5 points. Recall the one-time pad discussed in class, where Enc(k,m) = k & m and Dec(k,c) =
k & c. Here, keys, messages, and ciphertexts are all n bits for some integer n. Show that the one-time pad
is (0, 1)-CPA-secure as a symmetric key encryption scheme.. Hint: what is the distribution of Enc(k, m) for
a random choice of k?

Part (b). 5 points. Show that the one-time pad is not even (0, 2)-CPA-secure.



Part (c). 5 points. In Problem 2, you showed that for public key encryption, (0,1)-CPA-security is
equivalent to (poly, poly)-CPA-security, and in particular implies (0, 2)-CPA-security. But for the one-time
pad, and therefore symmetric key encryption in general, this is not true. Explain why.

Part (d). 5 points. Generalize part (2) to show that any (Enc, Dec) where Enc is deterministz’tﬂ cannot
be even (0, 2)-CPA-secure. (Note that this also applies to public key encryption schemes)

4 Problem 4 (30 points)

For each of the following, determine the output distribution resulting from measuring the state. That is, for
each possible measurement outcome, determine the probability measuring the state produces that outcome.
Express all probabilities as rational numbers. (5 points each)

() |va) = 210) + 3]1).
(b) l) = §10) + ge/2[1).

(c) [¢e) = 1 (e'™/3 — e7"™/3) |0) + a|1). Here, a is the unique positive real number such that |t).) is a valid
quantum state.

(d) [¢a) = Hltba).
(€) lthe) = Hlthy).
() |y) = Hlpe).

Lthat is, on any key/message pair, repeated runs of Enc will produce the same output



	Problem 1 (20 points)
	Problem 2 (30 points)
	Problem 3 (20 points)
	Problem 4 (30 points)

