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Notes for Lecture 8 - Lattices Continued

1 Review

Definition 1 Operational Definition of a Lattice

The lattice L(B) is the set of integer linear combinations of the column vectors of the
matrix B. This condition is equivalent to that of being a discrete subgroup of Rn but
easier to reason about in practice.

Definition 2 Shortest Vector Problem (SVP)

Given some matrix B find the vector v ∈ L(B)\{0} which minimizes ||v||2
We can also define an approximate problem SV Pγ which is to find some vector v′

such that ||v′||2 ≤ γ||v||2 where v is the optimal vector.

Definition 3 Closest Vector Problem (CVP)

Given some matrix B and some point t find the vector v ∈ L(B) which minimizes
||v − t||2

Note that we can also define gap and approximation variants for both of these.

2 Special Classes of Lattices

Let q ∈ Z : q ≥ 2 where q is not necessarily prime and A ∈ Zqm×n where m,n ∈ Z :
m > n > 0

1. Λ⊥q (A) = {x ∈ Zm : xT · A = 0n mod q

We note that this is clearly a discrete subgroup of Zm as it trivially contains
the identity and inverses. As for addition if xT · A, yT · A = 0 mod q then
(x+ y)T · A = xT · A+ yT · A = 0 mod q

We can additionally go by our more operational definition and construct a set
of column vectors B. Assume that A is of full rank. We can then find the
left kernel of A, C ∈ Zm−n : CTA = 0 mod q. This is by itself insufficient as
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the lattice contains all vectors for which each coordinate is a multiple of q, this
subset forms a full rank sub-lattice. But we can easily resolve this by setting
B = (C|qIm).

2. ΛQ(A) = {x ∈ Zm : ∃r : x = Ar mod q}
The analysis of this is similar. It is obviously a discrete subgroup and can be
generated by (A|qIm)

Remark 4 On Lattice Bases

Although neither set of generating vectors is a basis (there are two many vectors) this
is fine because any set of integer vectors generates a lattice as it is a subgroup of Z.
This is not in general true for real vectors (consider the set of vectors in R1 {1,

√
2}

3 Deriving Cryptographic problems from Lattices

1. Short Integer Solution (SIS)

Let q,m, β be functions of our security parameter n. Then sample A ←− Zm×nq

uniformly at random. We then attempt to find some x ∈ Zm\{0} such that
||x||2 ≤ β and AT · x = 0n mod q.

Note that this is equivalent to solving SV Pγ over Λ⊥q (A) where γ = β
optDist

where

optDist is the shortest vector and optDist ≈
√
m.

This is because if m > cn log q where c is some constant then with high proba-
bility there exists some x ∈ Λ⊥q (A) : x ∈ {0, 1}m.

From this we can derive the assumption that SISq,m,β is hard for appropriate
choices of q,m, β if SV Pγ is hard.

2. Hash Functions from SIS

For A ∈ Zm×nq define fA : {0, 1}m −→ Znq where fA(x) = ATx mod q.

We will now show that this is a good hash function

(a) fA will be compressing for m > n log(q) simply by looking at the number
of bits necessary to represent an arbitrary vector in Znq

(b) We can derive collision resistance by hardness of SIS. Assume we have
some x0, x1 ∈ {0, 1}m : x0 6= x1, fA(x0) = fA(x1) In that case we know
that AT (x0 − x1) = 0 mod q. But as x0 − x1 is a vector in {−1, 0, 1}m
and thus also has a norm ≤

√
m which will with high probability be short

relative to the optimal vector.
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Remark 5 This is a very hash function as it can be written as just a subset
sum of the set of columns. However, the matrix A can take a significant amount
of memory to store

3. Learning with Errors (LWE)

Definition 6 Discrete Gaussian Distribution

There is a distribution D′ over Z where we will define D′σ,µ(x) = P[x : x ←−

Gσ,µ] = e−π
(x−µ)2

σ2 where G corresponds to a continuous Gaussian. Note that the
constant here is slightly different than the standard case

We will then construct the actual distribution D simply by normalizing such

that Dσ,µ =
D′σ,µ(x)∑
s∈ZD

′
σ,µ(s)

Letting A be a matrix again. We note that if given u = A ·s it is easy to retrieve
s with linear algebra. To get the LWE problem we let q,m, σ me functions of
m and sample A from Zm×n, s from Znq and e from Dm

,0 (that is a length m
vector of errors).

We then compute u = A · S + e mod q.

From here we have two variants of the problem:

(a) Search: Given A, u find s. Note that this is similar to solving CV Pγ on
Λq(A)

(b) Decision: Distinguish A, u from a random A and random u.

(c) We note that these problems are equally hard, given search we can easily
solve decision by finding a candidate for s and seeing if it works.

To go in the other direction is slightly harder but we can use decision to
solve search one coordinate at a time. Assume we are trying to find the
first coordinate of s, we guess some c ∈ Zq. We then sample some random
r ∈ Zq. Add r to the relevant coordinate in the columns of A and add rk to
the relevant coordinate of u. Then run the decision algorithm. With high
probability this will only work if k is the correct guess for this coordinate.
We can then repeat for each coordinate.

(d) Defining Public Key Encryption from LWE

Gen() samples A ∈ Zm×nq , s ∈ Znq , e ∈ Dm
σ,0 as before. We then let the

secret key sk = (A, s) and the public key pk = (A,As+ e mod q).

We then define Enc(pk,M) where M ∈ {0, 1}. Choose x ∈ {0, 1}n and
return c = (xTA mod q, u · x + d q

2
cM mod q (The q

2
is simply a num-

ber near q
2
. We mask the message with u and multiplying by q

2
ensures
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that messages that are nearby in message space aren’t close together in
ciphertext space.

We can similarly define Dec(sk = (A, s), c = (y, z)). We can then let
compute z − y · s = (u · x + d q

2
cM) − (xTA) · s mod q = ((As + e) · x +

d q
2
cM)− (xTA) · s mod q = xT e+ q

2
cM mod q. But because xT e is just

a sum of a subset of the entries of e and e is pulled from a distribution
with width ≈ sigma and thus |xT e| ≈

√
mσno(1). We can then define our

residues to be within the range − q
2

to q
2
. In this case if M = 0 then the

value we compute should be near 0 if it is 1 then it should be far away
from 0 which are distinguishable with high probability.

This can be scaled to larger messages by choosing sufficiently large q to
allow for spacing of messages.

(e) Proving that this is CPA Secure Because we are only allowing messages
0,1 the adversary will always submit exactly both in the CPA experiment

We construct a hybrid proof where H0 is the CPA-experiment, H1 is the
same but the encryption function replaces u with a random vector. H0 and
H1 can’t be distinguished by the LWE assumption. For H2 we note that
if A, x, u are random then A, u, xTA, xTu are statistically indistinguishable
from random and thus security holds.

Remark 7 Learning Parity with Noise (LPN): There is a similar problem LPN where
q = 2 and e is sampled from some Bernoulli distribution where it is 1 with some
small probability ε and 0 otherwise. Unlike LWE - LPN doesn’t have a connection
with Lattices where LWE and SIS are as hard GAP−CV Pγ, GAPSV Pγ in the worst
case.

Additionally, LWE instances can be added together to get a new LWE instance which
isn’t true for LPN.
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