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Notes for Lecture 8

1 Introduction

In this lecture, we will continue talking about various algebraic tools that are used
in cryptography. In particular, we will talk about lattices, discuss hard problems on
lattices and describe why they are useful.

2 Lattices

A lattice is, informally, a regular grid of points in Euclidean space. We usually think
of lattices as being high dimensional objects (with dimension greater than 2). Here
are two definitions of lattices:
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y

Figure 1: A lattice
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1. A discrete (the points aren’t too close together) subgroup of Rn

Note that a regular set of points is indeed a subgroup as long as the origin is a
member of the regular set of points.

2. The set of integer linear combinations of a linearly independent basis

Consider a basis B = {~b1, ~b2, . . . , ~bn′}. The lattice for this basis is L(B) =

{
∑n′

i=1 xi
~bi : xi ∈ Z}. We usually consider full rank bases i.e. with n′ = n. If the

xi here were, instead real, then these combinations would just be some vector
subspace of Rn.

The two definitions above are equivalent; in fact, one direction is easy to show. The
set of integer linear combinations of any set of vectors is always a subgroup of Rn. We
need the vectors to be linearly independent to ensure that the points are discrete. If
the vectors have linear dependence, we may end up with a non-discrete set of points.

Non-example For n = 1, set B = {1,
√

2}. All integer combinations of 1 and
√

2
are not discrete. In particular, based on any rational approximation of

√
2, we could

get arbitrarily close to it but never hit it. We can use this to get integer combinations
that get arbitrarily close to 0 without ever hitting it.

Examples of Lattices

1. B =

{(
0
1

)
,

(
1
0

)}
The lattice for this basis is L(B) = Z2, the set of all points with integer coordi-
nates.

2. B =

{(
1
3

)
,

(
1
2

)}

Here, again, L(B) = Z2. To see why notice that

(
0
1

)
and

(
1
0

)
are in this lattice

L(B). Consequently, the lattice generated by them is also in L(B). We can also

show that all the vectors in B are spanned by the two vectors

(
0
1

)
and

(
1
0

)
.

Key Takeaway: Different bases can generate the same lattice.

3. B =

{(
1
1

)
,

(
1
−1

)}
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Note that this is a sublattice of the prior two lattices since the points are
all integer coordinates. However, it does not contain all integer points — for

instance, it does not contain

(
0
1

)
since the only way to do this is to have a

(signed) half contribution from each, which is not an integer combination.

3 Generating the Same Lattice

In this section, we characterize when two bases generate the same lattice.

Recall Two bases B1 and B2 generate the same vector space if and only if there
exists some invertible matrix U such that B1 = B2U. This is because the vectors in
B1 can now be expressed as a real-coefficient linear combination of the vectors in B2
and vice-versa.

Analogy for Lattices

Definition 1 A matrix U ∈ Zn×n is unimodular if det(U) = ±1.

Theorem 2 If U is unimodular, then U−1 exists and is unimodular. Note that the
inverse is defined over Rn×n though the entries are all integers.

First, we see that U is invertible since det(U) 6= 0. Recall that U−1 = 1
det(U)

adj(U).

Since adj(U) is obtained by taking determinants of submatrices, each of which are
integer coefficient polynomials, it has integer entries. This combined with the fact
that det(U) = ±1 tells us that U−1 has integer entries. Since det(U−1) = 1

det(U)
= ±1,

we have that U−1 is unimodular.

Question: Is the unimodular condition sufficient and necessary?
Are there any other integer matrices that have integer inverses?

Yes, it is sufficient and necessary. Since det(U−1) = 1
det(U)

and the determinants are

integers, we must have that det(U) = ±1.

Theorem 3 If B1,B2 ∈ Rn×n are full rank then L(B1) = L(B2) if and only if there
exists some unimodular matrix U such that B2 = B1U.
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=⇒ If L(B1) = L(B2) and B2 =
(
b1 · · · bn

)
then bi must lie in L(B1). Thus,

there must exist some integer matrix U such that B2 = B1U since the columns of B2
are linear combinations of the columns of B1. By the same argument as above, there
exists some integer matrix U ′ such that B1 = B2U ′. Combining these two equations,
we have B2 = B2U ′U. Using the fact that B2 is full rank, we have that U ′U = I.
Since these two matrices have integer determinants that multiply to 1, we have that
det(U) = ±1, which tells us that it is unimodular.

⇐= Suppose y ∈ L(B2). This tells us that there exists some integer vector x such
that y = B2x = B1Ux. Since U is unimodular, Ux has integer entries. Thus, y also
lies in L(B1) and so L(B2) ⊆ L(B1). An identical argument (using the fact that U−1

is unimodular) shows that L(B1) ⊆ L(B2) and we are done.

4 Hard Problems on Lattices

Definition 4 (Shortest Vector Problem (SVP)). Given a basis B ∈ Zn×n, find x ∈ Zn
such that

1. x ∈ L(B)\{0}

2. |x|2 is minimized, where |x|2 is the L2 norm of x

The shortest vector need not be unique. In fact, if x is a shortest vector, so is −x.
As another example, for the basis Zn, all standard bases and their negations will be
shortest vectors.

Question: Is the L2 norm special here or are all norms
equivalently hard?

The various p−norms are more or less equivalent. We will use a relaxation that is the
approximate SVP that tolerates some amount of error. All Lp norms are related by
some multiplicative factors and those factors will be absorbed into the approximation.
At least for the approximate version the different Lp norms are equivalent. For the
exact version they are believed to be equivalently hard.

Note All lattices we deal with will have integer coordinates. Though real coordi-
nates are technically allowed, we will not deal with them since we need finite sized
inputs. We could have rational inputs, but this is equivalent to the integer case since
we can multiply by the lowest common denominator.

Definition 5 (Closest Vector Problem (CVP)). Given a basis B ∈ Zn×n and a target
vector t ∈ Zn find x ∈ Zn such that
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1. x ∈ L(B)

2. |x− t|2 is minimized

Unfortunately, we don’t know how to build crypto from either of these problems.
Thus, we define approximate versions of them.

Definition 6 (SVPγ). Given a basis B ∈ Zn×n, find x ∈ Zn such that

1. x ∈ L(B)\{0}

2. |x|2 ≤ γλ1(B)

where λ1(B) is the length of the shortest vector.

Definition 7 (CVPγ). Given a basis B ∈ Zn×n and a target vector t ∈ Zn find
x ∈ Zn such that

1. x ∈ L(B)

2. |x− t|2 ≤ γdist(L(B), t)

where dist(L(B), t) is the actual shortest distance between the lattice and t.

The following definitions are decisional variants of the approximate versions:

Definition 8 (GAP SVPγ). Given a basis B ∈ Zn×n and a real number s > 0, decide
whether λ1(B) ≤ s or λ1(B) ≥ γs where λ1(B)is the length of the shortest vector.

Definition 9 (GAP CVPγ). Given a basis B ∈ Zn×n, target vector t ∈ Zn and a real
s > 0, decide whether dist(L(B), t) ≤ s or dist(L(B), t) ≥ γs where dist(L(B), t) is
the actual shortest distance between the lattice and t.

5 Complexity Landscape for Gapγ

We analyze the complexity of Gapγ as a function of γ. As we increase γ, eventually (for

γ > 2n log log(n/ logn)) the problem becomes easy. On the other hand, if γ < 2(logn)1−ε

for ε < 0 (i.e. sub-polynomial in n), the problem is NP-Hard.1 A complexity result

1Note that these problems aren’t necessarily in NP since, for the SVP problem, when we get a
vector of size s and a lattice, we know that there is a vector of length at most s, but not that it is
the minimal vector.
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states that once γ >
√
n, tthe problem is in NP ∩ co-NP. Crypto comes in when

γ > n.

1

NP-Hard

2(logn)1−ε √
n

NP ∩ co-NP →
n

Crypto →

2n log log(n/ logn)

Easy
γ

6 Why are Lattices Useful?

In this section, we will give a sketch of lattice-base signatures. Though we will do
things a little differently later, here is a little intuition:

Intuition Suppose we have a CVPγ instance B, t. We can do something called
”lattice rounding.” If our lattice was all the integers, then solving the closest vector
problem is easy — we can just round the coefficients of our target vector to the nearest
integer and we are done.

In a more general lattice, we round the coefficients of the target vector so that it
is still close to t but now lies in the lattice. To do this, we compute z = B−1t. If
t ∈ L(B), then this is equivalent to z ∈ Zn. Thus, if z is all integers we know that t
is in the lattice and it is the closest vector.

If z 6∈ Zn, we round each coordinate of z to the nearest integer to get v = dzc ∈ Zn.
We now output Bv ∈ L(B). The difference between this and our target vector is

|Bv − t| = |BdB−1tc − t|2
= |BdB−1tc − BB−1t|2
= |B

(
dB−1tc − B−1t

)
|2

Each entry in (dB−1tc − B−1t) is between −1/2 and 1/2. Thus the norm of this
difference vector is O(

√
n). Suppose the entries of B are bounded by δ. Then, |Bv −

t|2 ≤ O(n1.5δ). 2 Thus having a short basis lets us solve CVPγ. On the flip side,
having a long basis prevents us from solving CVPγ.

Signature Scheme from Lattices

• Set sk = short basis and pk = long basis. 3

2Since B is an n × n matrix, the size of product with a vector can only grow by a factor of n
corresponding to the size of the matrix. We get another factor of δ corresponding to the entries of
the matrix. We get the

√
n from the norm of our original vector.

3We generate our short basis by sampling random short vectors and hoping they’re linearly
independent. We can get our long basis by multiplying with a random unimodular matrix.
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• sign(sk,m) : H(m) → Zn for some hash function H. The signature is a CVPγ

solution σ such that |σ −H(m)|2 is small.

• To verify, check whether σ ∈ L(B) and check the norm |σ −H(m)|2

Why do we like lattices?

• It is an alternate hard problem with conjectured post-quantum resistance

• The verification is super fast (simple linear algebra). The downside here is that
though it is very fast, the parameters are large

• They provide additional functionalities such as fully homomorphic encryption.4

4Computing on encrypted data.
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