COS 533: Advanced Cryptography Princeton University
Lecture 6 (February 23, 2021)
Lecturer: Mark Zhandry Scribe: Geoffrey Mon

Notes for Lecture 6

1 Introduction

We continue to discuss elliptic curves; in particular, we discuss how they are applied
in cryptography and why they are useful, and we will also cover some known attacks
on elliptic curves, especially using pairings. We also discuss other applications of
pairings and how they can also be useful for building cryptography.

2 Elliptic curves

Definition 1 An elliptic curve E over a field F is the set of solutions (x,y) to the
equation y* = x® + ax + b.

If we have IF = R, then for two points P, (), we can define addition P+() geometrically
as drawing a line that includes both P and @, finding the third point where the
line intersects F, and mirroring this point across the x-axis. This operation can be
computed efficiently, and the details and corner cases are discussed in the previous
lecture. In particular, the addition operation is associative (due to some intuition
from algebraic geometry, out of scope for this course), and so we can define a group
using the points of E as the elements, using addition as the group law, and using a
point at y = oo as the identity.

For cryptographic purposes, we will use elliptic curves over finite fields, because we
need to be able to represent field elements on a computer with a finite number of
bits. In doing so, we lose the geometric intuition from using R as the base field, but
the algebraic formulas for the addition group law still make sense over any field. In
order to apply elliptic curves to cryptography, we would like to know more about the
structure of an elliptic curve E over a finite field F. Specifically, how big is F, and
does it have large prime-order cycles, which would be useful for constructing cyclic
subgroups on which we can generate discrete log instances?

Theorem 2 (Hasse) If the field size is |F| = q, then

El = (¢ + 1) <2Vq

In particular, |E| is very close to the field size.

1

The rough intuition for this is that about half of F will be quadratic residues', and we
expect that 2° + ax + b should “evenly distribute” points over F, and so for roughly
half of the elements =, 2 + ax + b will be a quadratic residue. Each quadratic residue
has two roots, so for a fixed z, if y? = 2% + ax + b is a quadratic residue, then it has
two solutions (x,y). Therefore, the size of E should be about the size of |F|.

The takeaway of this result is that picking a large field will yield a elliptic curve that
s a large group, and so we will aim to use large fields for security. Additionally, if we
can generate a group of prime order, then the group will also be cyclic, and we can
build cryptography off of discrete log on that group. In order to utilize an elliptic
curve for discrete log or other similar problems, we need to determine |E| efficiently
(e.g. to check if it is prime), and we also need to generate elements of E efficiently
(e.g. to find a generator, if |E| is prime and hence E is cyclic).

e Schoof’s algorithm can compute |F| in polynomial time (that is, in time poly-
nomial to log ¢, as the input is the field size).

e To generate a point in F, we can make use of the quadratic residue intuition
from before: generate a random x € I, and compute 22 + ax + b, which will be
a quadratic residue with probability ~ 1/2; if 23 + ax + b is a quadratic residue
y?, then compute one of its square roots y. Since this succeeds with probability
~ 1/2, we will need to repeat about 2 times in expectation to successfully find
a point in E. All of these steps can be done efficiently for a finite field.

2.1 Security of elliptic curves

Why use elliptic curves in cryptography? The original motivation is that elliptic
curves seem to provide the same level of security as other cryptographic groups while
requiring less resources. For instance, the best attacks on discrete log instances over
finite fields F run in subexponential time:

exp(O((log|F|)"* - (log log[F|)*/?))

Therefore, in practice, we need |F| to be quite large in order to maintain a good level
of security. On the other hand, the best known discrete log attacks on many elliptic
curves run in time \F[l/ ?_ which is exponential in O(log|F|). These attacks, such as
the baby-step giant-step algorithm, can be applied to any group: for any group of
order p, discrete log can be solved in O(p'/?) group operations?. Hence, assuming
there are no faster attacks, we can use a smaller (i.e. more efficient) elliptic curve
group to get the same level of security as a larger finite field.

'k is a quadratic residue if Im.m?2 =k in F
2Interestingly, while baby-step giant-step requires O(p'/?) space, there exist other attacks (Pol-
lard’s rho algorithm) with similar runtime but that requires O(1) space.

3 Pairings

A notable non-generic attack on elliptic curves (i.e. an attack that exploits the struc-
ture of elliptic curves, rather than applying to any group) is the MOV attack?®, which
constructs a pairing for an elliptic curve.

Definition 3 A pairing (also called a bilinear map) is a map e : G x G — Gy that
satisfies the following:

e non-degenerate: for a fized g, e(g, h) always outputs the identity element 1 for
all h, only if g is the identily element (and vice versa for a fized h). In other
words, e should not always output the identity, unless its input is the identity.

e bilinear: for g,g;,h,h; € G,

6(91 X g2, h) = e<gl> h) X 6(92, h)
e(g, 1 x ha) = e(g, h1) x e(g, ha)

Note that the multiplication within the parameters of e denotes the group law of
G, while the multiplication of the images of e denotes the group law of Gs.

In the case that G is cyclic (which will be true in most cryptography-relevant cases),
then it is also true that
e(g", h") = e(g, h)™

If we have a pairing e that can be efficiently evaluated, we can reduce certain problem
instances in G to instances in Gy. This is a problem because for a prime-order
elliptic curve F on F with |F| = ¢, there exists® an efficiently-computable Weil pairing
e: ExE — F ., where k is the smallest integer such that |E| divides ¢*—1. Intuitively,
the multiplicative subgroup of F » has ¢" — 1 elements, and using the nondegeneracy
and bilinearity properties of e, we have that the image of e in [F» is a multiplicative
subgroup of F r. Therefore, the cardinality of the image of e, which is |E|, must
divide ¢* — 1. If we pick E such that k is e.g. a small constant, then we will be able to
solve discrete log and decisional Diffie-Hellman instances on E by reducing them to
instances on F ., where we can use the subexponential attacks on finite fields. So, we
should be careful to pick F such that k is large enough that this reduction to finite
fields does not provide any speedup over the generic |E |1/ ? fime attacks.

3.1 Attacking discrete log

If a pairing e : G x G — G, exists, then discrete log in prime order G can be reduced
to discrete log in G,. Suppose that we are given (g,h = ¢%) € G*, and we would

3named for Menezes, Okamoto, and Vanstone
4ignoring a few corner cases

like to recover a. Then, compute ¢’ = e(g,g) and b’ = e(h, g); by bilinearity, h' =
e(g%, 9) = e(g,9)* = (¢')*. Therefore, solving the discrete log instance (¢',h') € G2
will yield an answer for the original instance (g, h) € G?, but potentially modulo a
different number. But because e(-, g) for a fixed g is a group homomorphism, and
by nondegeneracy and the prime order of G, the image of e(-, g) is a subgroup of G,
with the same prime order as G, and so the answer to (¢’, h') is precisely the answer

to (g, h).

3.2 Attacking decisional Diffie-Hellman

A pairing can also be used to reduce decisional Diffie-Hellman (DDH) instances.
Suppose we are provided with (g,h = g%, u = ¢°,v = ¢°), where ¢ = ab or c is
uniformly random and independent of a and b; we would like to determine whether
¢ = ab or ¢ is random. We can compute e(g,v) and e(h,u):

o If c = ab, then e(g,v) = e(g,9)® = e(h,u).

e If ¢ is random, then e(g,v) = e(g, g)¢, but e(h,u) = e(g, g)®.

Hence, we can test whether e(g,v) = e(h, u); if ¢ = ab then they will always be equal,
but if ¢ is random, then the two values will almost always be different.

3.3 Application: three-party non-interactive key agreement

While we have seen uses of pairings for attacks, we can also use pairings to build
cryptography. In particular, a three-party non-interactive key agreement protocol
is where three parties A, B, C' each broadcast public messages, and can compute a
secret that is known only to the three parties. Note that we are interested in a non-
interactive protocol, that is a party cannot read others” messages in order to decide
what to send out®.

We have already seen the ElGamal public key encryption scheme, which also works as
a two-party non-interactive protocol: A picks some a < Z, and broadcasts g*, while
B picks some b € Z,, and broadcasts g°; each party can compute g = (¢%)* = (¢°)* as
the shared secret, and using the DDH hardness assumption, the shared secret cannot
be distinguished from a random group element, even though ¢ and ¢® are public.

To extend this to three parties, have party A pick a private secret a < Z,, compute g°,
and broadcasts ¢g%; similarly, have B and C each compute and broadcast ¢°, g°. Now,

5 A multiparty interactive key agreement protocol for arbitrarily many parties can be as follows:
each party generates a public key and a secret key, and sends their public key to a designated party
A; then, A generates the shared key, encrypts it with each public key, and broadcasts the ciphertexts
so that each party can use their own secret key to recover the shared key.

4

abc

A can compute the shared secret k = e(g, ¢)?, as e(g°, g°)* = e(g,g)®°. Similarly,

B can compute e(g?%, g¢)® = e(g,9)® and C can compute e(g?%, g°)¢ = e(g, g)**, so
everyone has the same shared secret. In contrast with ElGamal, where the pairing
helps to break DDH, it is unclear whether the pairing can help us break this scheme.
The security of this scheme is based on the bilinear DDH assumption: given (g,h =
g%, u=g"v=g°w=e(g,g)?%, no PPT adversary distinguishes (with non-negligible
advantage) whether d = abc or d is uniformly random®.

It is a big challenge to find (or disprove the existence of) useful multilinear maps, the
natural generalization to bilinear maps, which for e.g. would be useful for multiparty
non-interactive protocols. It seems that although elliptic curves have efficiently com-
putable bilinear maps, but it is unclear whether they have useful multilinear maps.
Later in the course, we may see “noisy” multilinear maps which would also be useful
for multiparty non-interactive protocols.

3.4 Application: signature scheme

We can also briefly describe how to use a pairing to build a signature scheme for
messages in M, assuming we have a hash function H : M — G that behaves
like a random oracle”. Then, let sk = a + Z,, and let pk = (g,¢%). To sign,
return Sign(sk,m) = (H(m))®, and for Ver(pk,m, o), test if e(g,o) < e(h, H(m)).
By bilinearity, if the signature is valid, then e(g,0) = e(g, H(m))*, which equals
e(h, H(m)) = e(g, H(m))".

Intuitively, an adversary gets to see g, g%, and H(m) which is equal to g* for some
b; forging a signature requires computing (H(m))® = ¢®, which is hard using the
computational Diffie-Hellman (CDH) assumption. Note that while a pairing lets us
solve DDH, it does not allow us to solve CDH, and indeed we rely on CDH still
being hard to prove that this signature scheme is hard. This property of pairings
is sometimes referred to as gap Diffie-Hellman. If we build this scheme using an
elliptic curve E on a field of size, say, 22°°, and we are careful to pick E such that
discrete log is not easy (using Section 3.1), then we can have short (i.e. 256-bit)
signatures where the best-known attacks require 2'%® time, which is infeasible. This
is essentially the best practical signature scheme known, and a major challenge in
cryptography research is to find a scheme that yields shorter signatures. We cannot
get shorter signatures with the same security using pairings or elliptic groups, because
of the generic baby-step giant-step attack, but there are other advanced (although
impractical) techniques such as obfuscation, which we may see later in the course,
that can yield shorter signatures.

SThere are no known attacks for bilinear DDH other than solving discrete log, and it’s unclear
if we can base bilinear DDH security off of other security assumptions, since a pairing helps us to
break DDH.

"i.e. H looks like a uniformly random function

	Introduction
	Elliptic curves
	Security of elliptic curves

	Pairings
	Attacking discrete log
	Attacking decisional Diffie-Hellman
	Application: three-party non-interactive key agreement
	Application: signature scheme

