
COS 533: Advanced Cryptography Princeton University
Lecture 5 (February 18)
Lecturer: Mark Zhandry Scribe: Aleksa Milojevic

Notes for Lecture 5 - Algebraic Tools in
Cryptography

1 Introduction

In this lecture, we introduce and investigate algebraic tools used in Cryptography,
such as multiplicative groups over finite fields and elliptic curve groups. These are
commonly used to achieve public-key encryption (PKE), code obfuscation, etc. We
will try to give a broad overview of the techniques used.

2 Cryptographic groups

First, we begin by defining the mathematical notion of the group.

Definition 1. A group G consists of an underlying set G and of a binary operation
· : G×G→ G which satisfies the following properties:

• The operation · is associative, i.e. a·(b·c) = (a·b)·c, for all elements a, b, c ∈ G.

• There is an element of G called the identity, and denoted by 1 ∈ G, for which
we have 1 · a = a · 1 = a for all elements a ∈ G.

• For all elements a ∈ G, there is an inverse element a−1 ∈ G for which a · a−1 =
a−1 · a = 1.

The operation · is usually called multiplication. Moreover, we will mostly consider
groups in which the operation · is commutative, i.e. a · b = b · a for all a, b ∈ G.1

In the cryptographic context, we will require the multiplication operation to be effi-
cient. In other words, we need to be able to compute a · b efficiently when a, b ∈ G
are given.

Intuitively, cryptographic groups are the groups in which no other operation except
multiplication can be efficiently performed. One of the usual assumptions we make
is the hardness of the Discrete Logarithm problem.

1Such groups in which · is commutative are sometimes called Abelian groups.

1

Definition 2. (Discrete Logarithm assumption) Let G be a group. We say that G
satisfies the Discrete Logarithm assumption if given elements g, h = ga ∈ G, where
a ∈ Z, it is impossible to compute a efficiently.2

Discrete Logarithm assumption is usually taken as the minimal assumption on the
group. However, we will often need to make even stronger assumptions on the group
G in order to derive useful results. To find groups that satisfy the Discrete Logarithm
assumption, let us consider two hypothetical attacks on the Discrete Logarithm prob-
lem.

One way to attack Discrete Logarithm problem is to try all possible values of a in
a brute-force manner. Let the subgroup generated by g be 〈g〉 = {1, g, g2, · · · , gk−1}
where gk = 1.3 So, if k was polynomial in λ, we could just try out all possible
values of a ∈ {0, 1, . . . , k} and check if ga = h. Thus, such an a could be found
efficiently, and thus Discrete assumption would not hold. Therefore, we see k must
be superpolynomial in λ. The ideal case, in which the size of 〈g〉 is maximal, happens
when 〈g〉 = G. In this case, we say g is a generator of our group. Moreover, we say
k = |〈g〉| = |G| is the order of the element g and of the group G. We denote it by
ord(g) = |〈g〉|.
There is another attack that may be directed against Discrete Logarithm problem in
case ord(g) has no large prime factors. To show how it works, we will assume that
ord(g) = pα1

1 p
α2
2 · · · p

αl
l , for some primes p1 < p2 < · · · < pl, and that pi ≤ poly(λ).

The idea is to determine a with respect to each of p
αj

j separately and then use the
Chinese Remainder Theorem to compute a mod ord(g).

Given g, h = ga, the attack proceeds by computing gj = gord(g)/pj , hj = hord(g)/pj . It
is simple to see that gaj = hj, just as ga = h, and that g

pj
j = gord(g) = 1. Therefore,

ord(gj) = pj, and we can simply check the all the values aj ∈ {0, 1, 2, . . . , pj − 1} to
find the one for which g

aj
j = hj. This can be done efficiently, as we only need to check

pj values, and pj = poly(λ). Note that a also satisfies gaj = hj, and thus we must
have a ≡ aj(mod pj).

Now, we try to find a(mod p2j). To do this, we compute gj = gord(g)/p
2
j , hj = hord(g)/p

2
j

and look for a value of aj which makes gaj = hj. As before, finding any value aj
satisfying the above equation amounts to finding a(mod ord(gj)). As now ord(gj) =
p2j , this means that we are actually looking for the value a(mod p2j). The trick is
that we do not need to check all of p2j possibilities as we did before: we have already
determined a mod pj and we need to consider only the numbers a mod pj, pj + a

2Note that the inverse operation of the discrete logarithm procedure would be computing h = ga

from (g, a), where g ∈ G, a ∈ Z. This can be done efficiently using the technique of repeated
squaring, using only O(log a) multiplication operations in G. Moreover, note that a is determined
only modulo ord(g), and if we wanted to be precise we should assume that it is hard to compute a
mod ord(g). However, this difference bears no practical importance.

3If G is finite, such integer k must always exist and is called the order of the element g.

2

mod pj, · · · , (pj − 1)pj + a mod pj. Thus, in time O(pj) we can find a(mod p2j).
This process can be continued for any higher power of pj, thus giving the value a(
mod p

αj

j) in time O(αj · pj).

Once we found a(mod p
αj

j) for all j, it is enough to use Chinese Remainder theorem
to compute a mod ord(g). However, this means we can solve Discrete Logarithm
problem efficiently, which presents a problem.

Therefore, the ideal case would be if we had a group G and its generator g such that
g had large prime order p.

Note that in this case we must have G ∼= Zp, where Zp is the group consisting of
residue classes modulo a prime p and the associated operation is addition modulo
p. As the operation on Zp is just addition, we see that exponentiation ga in the
group Zp amounts to simply multiplying the corresponding elements. Therefore,
Discrete Logarithm problem can be reduced to modular division, which is efficiently
computable. The conclusion is that Discrete Logarithm is not hard in Zp. Thus, the
only way for Discrete Logarithm to be hard in G is if the isomorphism G → Zp was
hard to compute.4

Now, we will try to construct such groups. We consider two main classes of such
groups: multiplicative groups of finite fields and elliptic curve groups.

3 Multiplicative groups over finite fields

Definition 3. A finite field F is consists of an underlying set F together with two
operations, +, · : F× F→ F, which satisfy the following conditions:

• The set F is a commutative group with respect to the operation +, and it has
identity 0 ∈ F.

• The set F\{0} is a commutative group with respect to the operation ·, and it has
identity 1 ∈ F.

• The operations + and · satisfy distributivity, i.e. we have a · (b+ c) = a · b+a · c
for all a, b, c ∈ F.

Example 4. Let q be a prime number. Then, the set Zq is a field with operations of
modular addition and modular multiplication. This field contains q elements.

4It is clear that the isomorphism Zp → G is efficiently computable, because such an isomorphism
is given by a 7→ ga, for a ∈ Zp, which can be computed using repeated squaring, as discussed earlier.
If the isomorphism G → Zp was efficiently computable as well, we could just pass to Zp, solve the
Discrete Logarithm problem there, and efficiently return to G after that.

3

More generally, for any prime power qk, there exists a unique field Fqk with qk ele-
ments, up to an efficiently computable isomorphism. All such fields can be viewed as
the extensions of Zq, i.e. Zq can be found as a subfield within Fqk .

For a field Fqk , we can consider the set Fqk\{0} as a group with the operation ·. This
group is called the multiplicative group of F, and it is a cyclic group of order qk − 1.
In other words, there exists an element g ∈ Fqk with order qk− 1 which generates the
whole group.

Note that these groups do not usually have prime order as we wanted. This is because
qk − 1 can be a prime number only when q = 2 and k is prime. If q > 2, it must be
odd, and thus qk−1 cannot be prime because it is even. If k is not prime, then qk−1
can be factored and we can prove qd − 1|qk − 1 for all divisors d|k. Thus, the group
Fqk\{0} is not quite what we want.

The idea is then to take a large subgroup G ⊂ Fqk\{0} of prime order. For example,
if both q and q−1

2
are prime,5 then we can take G to be a subgroup of order p = q−1

2

of Z∗q = Zq\{0}. This group then contains precisely the even powers of the generator
g of Z∗q, i.e. it contains precisely the quadratic residues. As G has prime order, any
of its non-trivial elements is a generator, so we can easily find its generator by finding
an arbitrary non-trivial quadratic residue.

4 Application: El Gamal Public key encryption

The setup is the following: Alice would like to make it possible for anyone to send
encrypted messages to her. To do this, she generates two keys, the public key pk
and the secret key sk, and broadcasts pk to everyone. Then, Bob should be able to
encrypt his message to Alice using her public key pk, while only Alice should be able
to decrypt the ciphertext using her secret key sk. We formalize this interaction as
follows:

Definition 5. A public key encryption (PKE) scheme is a set of three PPT algorithms
(Gen,Enc,Dec) which satisfy the following:

• The algorithm Gen generates the secret and the public key: (sk, pk)← Gen(1λ).

• The algorithm Enc takes the public key and a message m, and outputs a cipher-
text c = Enc(pk,m).

• The algorithm Dec takes the public key and a ciphertext c, and outputs a message
m = Dec(sk, c).

Correctness requirement: P[Dec(sk,Enc(pk,m)) = m] = 1 for all messages m.

5Such primes are called safe.

4

To define security, we consider the following game between the Challenger Ch and
the adversary A. First Ch gets a bit b ∈ {0, 1}, and generates (sk, pk) ← Gen(1λ)
and sends pk to A. Then A chooses two messages m0,m1 and sends them to Ch,
who responds with Enc(pk,mb). Then A outputs b′.6 We will denote this game by
IND− PubKb.

Definition 6. We say that (Gen,Enc,Dec) is a secure scheme if for all PPT adver-
saries A there exists a negligible function ε = ε(λ) such that:∣∣P[1← IND− PubK0(A, λ)]− P[1← IND− PubK1(A, λ)]

∣∣ ≤ ε

Now, we show how to construct such a scheme using cryptographic groups.

We will assume that we have a family of groups G(λ) of prime order p, where p ∼
exp(λ), and we will assume that our message space is G. Consider the following set
of algorithms:

Gen: choose a random generator g ← G, and a random element a ← Zp. Put
sk = (g, a), pk = (g, h = ga). 7

Enc((g, h),m): pick a random r ← Zp, compute the ciphertext c = (gr, hr ·m).

Dec((g, a), (c1, c2)): compute c2 · c−a1 .

This scheme is correct as Dec(sk,Enc(pk,m)) = Dec(sk, (gr, hr ·m)) = hr ·m · (gr)−a =
gar ·m · g−ar = m.

How do we prove security of such a scheme? The Discrete Logarithm assumption
implies it is hard to compute sk = (g, a) from pk = (g, ga), but it does not appear
enough to fully justify the security of the scheme. Therefore, we have to introduce a
new assumption:

Definition 7. (DDH - Decisional Diffie-Hellman assumption) Let G be a group. Let
D0 be the distribution of the quadruples (g, ga, gb, gab) over the random choice of a
generator g ← G and a, b ← Zp, and let D1 be the distribution of the quadruples
(g, ga, gb, gc) over the random choice of a generator g ← G and a, b, c← Zp. We say
that G satisfies the DDH assumption the distributions D0 and D1 are computationally
indistinguishable.

It can be shown that DDH assumption is at least as strong as the Discrete Logarithm
assumption, but it is not clear if the reverse implication holds. Thus, as we are not
able to derive DDH from Discrete Logarithm, we must assume it holds.

Now, we are in the position to prove the security of the above scheme: the idea is,
as usual, to use hybrids. Define the following hybrid distribution: let H0 be the

6Note that there are no CPA queries in this game. This is because A can compute the encryption
of any message m using his knowledge of the public key.

7Note that sk is hard to compute even if one knows pk. This is a necessary condition for security,
but it is not sufficient.

5

distribution (g, ga, gr, garm0), H1 be (g, ga, gr, gcm0), H2 be (g, ga, gr, gcm1) and H3

be (g, ga, gr, garm1), where a, r, c ∈ Zp are random elements and g ∈ G is a generator.
If we are able to show that every two pairs of adjacent hybrids are indistinguishable,
then so are H0 and H3 as well.

Note that H1 and H2 are in fact the same distribution, for the values gcm0 and gcm1

both follow the uniform distribution in G. To see why, put s = gf(s) for all elements
s ∈ Zp and observe that P[gcm0 = s] = P[gcgf(m0) = gf(s)] = P[c ≡ f(s) − f(m0)(
mod p)] = 1

p
, because c follows uniform distribution. As the same argument can be

applied to gcm1, we see that H1 and H2 are indistinguishable even in the information-
theoretic sense.

As for the hybrids H0 and H1, we can see that every adversary distinguishing be-
tween these two hybrids could be turned into a DDH adversary after dividing the
last coordinate with m0. Thus, if DDH assumption holds, hybrids H0 and H1 are
computationally indistinguishable. As the similar argument works for H2 and H3, we
see that H0 and H3 must indeed be computationally indistinguishable if DDH holds
in G. Thus, the security of the ElGamal scheme follows from DDH.

5 Elliptic curves

Definition 8. An elliptic curve E over a field F is the set of solutions (x, y) to the
equation y2 = x3 + ax + b.8 The discriminant of an elliptic curve is ∆ = 16(4a3 −
27b2).9

To get some intuition, we will assume F = R in the beginning.

Figure 1: Graphs of elliptic curves over the real numbers

8This form of the equation is called the Weierstrass form. Although elliptic curves may be defined
more generally, using an equation that is quadratic in y and cubic in x, every such curve can be
transformed into the Weierstrass form if charF 6= 2, 3.

9This quantity is useful because it characterizes the behavior of the elliptic curve, such as whether
it has 1 or 3 roots over the real number etc.

6

Note that the graph of an elliptic curve is symmetric around the x-axis. This is
because only y2 appears in the equation, and thus if (x, y) ∈ E, we also have (x,−y) ∈
E. Similarly, for very negative X, we will have x3 + ax+ b < 0 and thus there will be
no solutions. For positive x, one has |y| =

√
x3 + ax+ b ∼ x3/2, and thus the graph

increases to the infinity super-linearly.

Using an elliptic curve E, we can define a group G whose elements are the points of
E and the point at infinity ∞ (which we can think of as having coordinates (0,∞),
i.e. being all the way at the top of the y-axis). The operation in this group, which
we call addition, is defined the following way: for any two points P,Q we draw a
line through PQ and intersect it with the elliptic curve to get a third point. Then,
P + Q is defined to be the reflection of this new intersection point over the x-axis.
This process is depicted in the following diagram:

Figure 2: Group law on an elliptic curve

The case depicted in the picture is only the generic case and many edge cases could
appear: P could be ∞, it could be that P = Q and that there is no well-defined
line through these two points, etc. In these cases, one could make special definitions,
where a line through ∞ and P would just be the vertical line through P , a line
through two identical points would correspond to the tangent, etc. However, we will
derive a formula from which we will be able to characterize the addition law without
the need for special cases.

It is instructive to try to compute the coordinates of the sum of P and Q, in order
to check that this process is really well-defined (i.e. that the line PQ intersects E for
the third time etc.). In order to do this, let P = (xP , yP), Q = (xQ, yQ). The line
through P,Q can be written as y = rx + s, where r =

yQ−yP
xQ−xP

and s =
xQyP−xP yQ
xQ−xP

.

Thus, the intersection of this line with E can be found from

x3 + ax+ b = y2 = (rx+ s)2

7

Rearranging gives x3 − r2x+ (a− 2rs)x+ (b− r2) = 0. Note that this equation has
roots xP , xQ, xR, and therefore it can be factored as

x3 − r2x+ (a− 2rs)x+ (b− r2) = (x− xP)(x− xQ)(x− xR).

By opening the brackets on the right hand side and comparing the coefficients next
to x2, we find that

xP + xQ + xR = r2 =
(yQ − yP
xQ − xP

)2

.

Thus, we can express xR =
(
yQ−yP
xQ−xP

)2

− xP − xQ. As mentioned above, this formula

can be used to define addition for any two points on the curve.

6 Next time

Next time, we will consider the elliptic curves over the finite fields, which are more
useful in cryptography.

8

	Introduction
	Cryptographic groups
	Multiplicative groups over finite fields
	Application: El Gamal Public key encryption
	Elliptic curves
	Next time

