
COS 533: Advanced Cryptography Princeton University
Lecture 4 (Feb 11)
Lecturer: Mark Zhandry Scribe: Xiaoqi Chen

Notes for Lecture 4

1 Last Time

We were trying to prove the Goldreich-Levin theorem, which states that every OWF
has a hardcore bit. We had to technically modify the one-way function but it's a
technical detail.
Basically, what it reduces to is you're given an adversary B, that given F (x) and r
can compute ⟨x, r⟩ =

∑
xiri mod 2 with probability better than a half.

In the last lecture we proved that, for an adversary that achieves

Pr[B(r, F (x)) = ⟨x, r⟩] ≥ 3/4 + γ,

let H(r) = B(r, F (x)), we can find some choices of x (at least γ/2 fraction of xs) that
satisfy

Pr[H(r) = ⟨x, r⟩] ≥ 3/4 + γ/2.

We subsequently feed the H with two random but correlated input only differ in one
bit, and notice that

Pr[H(r)⊕H(r, ei) = xi] ≥ 1/2 + γ,

i.e., the probability that both H are correct or both are wrong (which leads to the
correct inner product) is 1/2 + γ, good enough for us to guess each digit xi. We can
then repeat this step for every i to recover x.

2 Proof of hardcore existence continued: Recover-
ing x from a weaker H(r) = B(r, F (x))

This time, we want to assume we only have Pr[H(r) = ⟨x, r⟩] ≥ 1/2+ε. The problem
is that given such H, the choice of correct x might not be unique, there might be two
or more x that satisfy the above condition.
We have to resort to something else. In Error Correcting Code language, we call it
list decoding, and solve all xs for a given H such that the condition holds. There are
only polynomial number of xs and we hope to output all of them efficiently.

1



Our strategy is to use H to implement a H ′ such that Pr[H ′(r) = ⟨x, r⟩] ≥ 7/8. We
construct several different H ′ such that the choice of x is unique in H ′. We can then
use the analysis from the last time to recover x (since 7/8 is above 3/4).
First, we choose a random string r1, . . . , rk ∈ {0, 1}λ for some parameter k that we'll
choose later. Now, we pretend we can magically obtain bi = ⟨x, ri⟩ (the inner product
of x with all ri), for one of the x that's consistent with H.
Now we define

H ′(r) = Maji∈[k] (H(r ⊕ ri)⊕ bi) .

This is similar to what we did in the 3/4 case, but in that case we used H two times,
therefore requiring the probability to be greater than 3/4. Here since H's probability
of correctness is only weakly over 1/2, we can't put two different value into H or we'll
be in trouble. Hence we assume we magically know one x already.
Now we note, by definition we have

Pr
r1,...,rk, r

[H(r ⊕ ri)⊕ bi = ⟨x, r⟩] = Pr[H(r ⊕ ri) = ⟨x, r ⊕ ri⟩] ≥ 1/2 + ε.

We can pull in the XOR into the inner product; then, since r ⊕ ri is just a random
value, by definition H will give correct answer with probability 1/2 + ε.
We can now set k high enough so that the majority is correct with high probability:

Pr
r1,...,rk, r

[H ′(r) = ⟨x, r⟩] ≥ 31/32

(We won't bother to calculate how large k must be here.)
Why 31/32? By Markov inequality, if we separate the probability, with 31/32 we can
show that Prr1,...,rk [Prr[H ′(r) = ⟨x, r⟩] ≥ 7/8] ≥ 3/4. Then, with the inner probability
of H, using the sample from the last lecture, we can use the 3/4 + γ case to find x.
Finally, the last part of the proof is we need to show how to obtain bis. Let k = 2l for
some l. Choose random r′1, . . . , r

′
l ∈ {0, 1}λ. For S ⊆ {1, . . . , l}, rs =

⊕
i∈S r

′
i. Here

we have 2l = k different rss, and there's enough for us to apply the step above. But
how do we compute bis?
Pretend that we can magically compute b′i = ⟨x, r′i⟩, then we know bS is simply
bS =

⊕
i∈S b

′
i. So we generated rs by taking the subset sum of a very small number

of rs, and to compute the bs for these rs we only need to compute the subset sum of
these b′s.
We reduced the task of computing for k = 2l different bSs to just computing for l
different b′is. The point is l is logarithmic, so we can just guess the b′is, by iterating
over all 2l cases.
So, working backwards, the algorithm works as follows. We first guess r′is and guess
b′is. We are right with some non-negligible probability. We then construct bis and r,

2



and construct H ′ then H, and use algorithm in last class to recover x. If we iterated
all possible b′is, we can actually recover all xs.
Remark. Here the rSs and bSs are all correlated. We are not sampling rSs uniformly
at random, but it doesn't matter. The analysis still works out just fine.
Question from student: In the part where we use majority and large enough k to
achieve 31/32 probability for correctness, if rS are correlated, how do we use the
probability bounds (which requires independence)?
Mark: We have to check the detail, but the point is in every step of the analysis we
don't need the variables to be completely independent, it turns out we just need them
to be somewhat independent.
In fact, each rS is on its own uniformly at random (or very close to it), and any two
of them are randomly independent (in fact, any log(k) of them).
Follow up question from student: If these rSs are completely independent, then the
distribution will follow something like approximately normal distribution, and the
probability of error should go down exponentially. So wouldn't it be enough to set k
to be logarithmic, and no need to guess the "small" ones, but we can just guess the
original ris in the beginning?
Mark: Why doesn't that work? I think the problem is that, if you do the analysis,
I think you really need something close to 1/varepsilon number of samples, if you
compute what k you needed. This is polynomial and then you can't guess all the ris.
In any case, for the purpose of this course, there's no need to go into that level of
detail. We certainly went over some details like what exactly is k, but hopefully the
algorithm itself makes sense.

3 Building signature scheme from OWF

3.1 Defining signature scheme

We show that one way permutation OWP implies pseudo-random generator PRG,
which implies pseudo-random functions PRF , and implies encryption ENC.
We also know (beyond the content of this course) that one way functions OWF can
make PRG.
Now we want to add a small piece to the puzzle: a one-way function OWF can make
signatures, the digital equivalent of a wax seal outside of an envelope, with the same
effect that no one has modified the content.
Definition. A Signature scheme is part of a public key scheme. We first make a pair

3



of keys by defining key-generator function1

(sk, pk)← Gen(1λ).

Then we can get signature of message M :

σ = Sig(sk,M).

Someone can then verify the signature via

0/1← V er(pk,M, σ),

with output 0 means reject and 1 means accept.
The definition of correctness is trivial, the verification function will accept signatures
correctly signed.
The intuition of the security definition is that the attacker can't change the con-
tent and forge a correct signature. The recipient will always verify the (potentially
modified) signature, so the attacker must come up with a signature.
We first define One-Time Security:

• Challenger Ch first make key pairs (sk, pk)← Gen(1λ). Give pk to attacker A.

• Attacker A chooses message M and gets signed σ = Sign(sk,M).

• Attacker comes up with M∗, σ∗.

• Attacker wins if (i) M∗ ̸= M and (ii) V er(pk,M, σ) = 1.

Note that we're letting the attacker to be both the sender and receiver of the message,
choosing M and getting its signature. The public key pk is broadcasted to everyone,
so at some point the recipient can verify a received message's correctness. Here we are
allowing the attacker to influence the message gets signed, similar to the encryption
case where attacker can modify the plaintext being encrypted.
In many cases, you want Many-Times Security. The attacker can query for many
correct signatures and do one forgery. The definition is similar, just allow multiple
queries {Mi} with σi = Sign(sk,Mi) in between, with the same final acceptance of
one forged message signature. Also, nontrivial attack means M∗ /∈ {Mi}i, i.e., the
attacker should come up with a new message, not repeating a message it queried.
The signature scheme is (one-time/many-time) secure if, ∀ PPT adversary A, Pr[A wins]
is negligible.

1Note: unary notation 1λ = (1111 . . . ) is merely a syntactic notation for ease of defining stuff
running in polynomial time (poly to input length λ). If we designate λ as input, its length would
be logarithmic, so polynomial running time means poly-log which is too strict.

4



3.2 From OWF to One-time signatures: Lamport signatures

We now show OWF implies one-time signatures, which then implies many-time sig-
natures.
For the one-time case, the construction is elegant, and is called Lamport signatures.
First, for Gen(1λ): assume we have a OWF F . We choose Xi,b ← {0, 1}λ for i ∈
{1, . . . , n}, b ∈ {0, 1}. Let yi,b = F (Xi,b). Let pk = yi,bi,b and sk = Xi,bi,b.
Now, let's sign an n-bit message: let Sign(sk,M ∈ {0, 1}n) output {Xi,mi

}. Imagine
X as a grid with n columns and 2 rows, and we select one of the two grids for every
column, based on the message's bits. We create 2n grids, and to sign a message we
reveal n of them.
To verify, we check F (σi) is indeed yi,Mi

; i.e., the signature is indeed the preimages
of the y values.
Security proof: the idea is that Sign(sk,M) reveals half of the key, but to compute
Sign(sk,M∗ ̸= M) for a different message will require a different key component that
the attacker haven't seen. Let's assume adversary A first commits (i ∈ {1, . . . , n}, b ∈
{0, 1}) ahead of time, then gets pk. Then it plays the signing game by providing M ,
but satisfies Mi ̸= b. Then it gets σ, and sends M∗, σ∗ where M∗

i = b. Conceptually,
the attacker commits which bit to attack beforehand (we will get rid of this later).
We reduce it to attacker B which gets y = F (X) and its goal is to get the preimage X.
A sets yib = y and choose xi′, b′ at random for (i′, b′) ̸= (i, b) and yi′,b′ = F (Xi′,b′). So
B knows the other components of the public key, because he constructed it himself.
B then sends pk to A.
B knows all but one component of the secret key, but that's enough for answering all
possible query from A. When A sends back M∗, σ∗, B knows the preimage it wants
to know.
To remove the i, b commitment, B simply guess them at random and abort if guessed
incorrectly. B's guess has 1/2n chance being correct. So if A has non-negligible
success rate ε, B has ε/2n chance.

3.3 Towards many-time signatures: chaining

However, Lamport signature is only one-time secure and not even two-time secure.
How to make it many-time secure? The solution is signature chaining.
Let us denote we already have a one-time secure signature scheme GenOT and SignOT .
We now construct a many-time secure signature scheme Gen and Sign.
We first generate a pair of key sk, pk ← GenOT (1

λ).
For the first signing request Sign(sk,M1): we get another pair of keys sk1, pk1 ←

5



GenOT (1
λ) and let σ1 ← SignOT (sk, (M1, pk1)), then output (pk1, σ1). Let the algo-

rithm be stateful and remember M1, sk1, pk1, σ1.
For the second signing request Sign(sk,M2), we get another pair of keys sk2, pk2 ←
GenOT (1

λ), and σ2 ← SignOT (sk, (M2, pk2)). Output (pk1, σ1, pk2, σ2).
For verification, we need to verify the entire chain by running both V erOT (pk, (m1, pk1), σ1)
and V erOT (pk1, (m2, pk2), σ2).
Since pk1 is stapled into the first signature, to forge the second signature the attacker
must come up with pk1, i.e., the signature of pk1 signed by pk.
This scheme has some problem. First it's stateful. Also, the domain of the message
space has to be bigger than the public key space. In the lamport signature case, the
public key space is larger than the message space.
Lamport signature only does OWF evaluation, and is very fast (which is useful in
practice when only one-time security is needed). In practice, we use other scheme for
fast many-time secure signature scheme.
For performance problem and message space size, we usually just sign the hash of the
message, as long as we have good properties of the hash. Hashing helps shrink the
public key size.
So far we build a long chain of messages. Instead, we can build a tree. Each secret
key can sign a pair of public keys, and this gives us a binary tree structure. To sign
a message, pick a leaf node of the tree, and the signature chain is the path to root,
with length is logarithmic. We can also generate the entire tree using PRF and just
remember the single PRF key (as part of sk), so we don't need to keep any state.

6


	Last Time
	Proof of hardcore existence continued: Recovering x from a weaker H(r)=B(r,F(x))
	Building signature scheme from OWF
	Defining signature scheme
	From OWF to One-time signatures: Lamport signatures
	Towards many-time signatures: chaining


