
COS 533: Advanced Cryptography Princeton University
Lecture 3 (February 9, 2021)
Lecturer: Mark Zhandry Scribe: Kevin Feng

Notes for Lecture 3

1 Last Time

Last time, we first defined pseudorandom functions (PRFs) and pseudorandom gen-
erators (PRGs) and began the proof of showing how to construct a PRF from a
PRG. The first step was showing how to create a length-doubling PRG from a 1-bit
expanding PRG, which was done with a hybrid argument. We ended by giving a
construction for using a length-doubling PRG to create a PRF.

2 Proof of Length-Doubling PRG → PRF

As a reminder, the construction for the PRF PRF is as follows. Let G be a length-
doubling PRG and k be the key to the PRF, with length λ.

It takes the key k and applies G. The result is a 2λ-bit string. PRF splits the string
in half into two λ-bit strings. Then it applies G separately to both halves, obtaining
a 4λ-bit string. PRF splits this into 4 λ-bits strings, and applies G to each string. It
continues in this way for n(λ) steps, for any desired polynomial n(λ).

The result is a 2n(λ)×λ-bit string. PRF will interpret this string as 2n(λ) separate λ-bit
strings. The output of PRF on input x with be the xth string in this list. Therefore,
PRF has inputs of length n(λ) and outputs of length λ.

It will be useful to think of the PRF computation as a tree: at the root is the PRF
key k. The children of a node containing x are the first and second half of G(x). The
tree has n+ 1 levels and 2n leaves. The leaves are the outputs of the PRF.

As described, PRF runs in time roughly 2n(λ), which is exponential. However, we can
use the fact that it is ”locally computable”, such that it runs in polynomial time to
compute any particular leaf. Indeed, instead of computing every node of the tree, we
only have to compute the nodes along the path from the root to the particular leaf
that we want.

Thus the time to compute a specific output of PRF is only n(λ) × Time(G). These
are both polynomial, so the entire run time is polynomial. Now we prove the security
of PRF.

1

The first natural idea is to construct a hybrid for each of the PRGs in the tree, which
each subsequent hybrid replacing one of the remaining PRGs with random. However,
there are 2n(λ) − 1 such PRGs, and thus we would get an advantage of ε/(2n(λ) − 1),
which is negligible. Thus, we need something a bit more clever. The idea is to hybrid
over levels instead, of which there are n(λ), which is polynomial.

Theorem 1 If G is a secure PRG, then the construction above is a secure PRF.

For the sake of contradiction suppose there is an adversary A and non-negligible ε
such that ∣∣Pr[1← PRF-EXP0(A, λ)]− Pr[1← PRF-EXP1(A, λ)]

∣∣ ≥ ε(λ)

Define hybrids Hi for i ∈ {0, . . . , n} as follows. Let H0 be the entire tree, with a
random λ-bit string as input. Note that this is the entire construction PRF. For H1,
we replace the top PRG of the tree with 2 uniformly random strings, which serve as
input to the next layer. For H2, we replace the next level of 2 PRGs with 4 uniformly
random strings. Similarly define Hi up to Hn, and note that hybrid Hn is simply 2n

random strings, i.e. it is a uniformly random function.

Then we see that A distinguishes between H0 and Hn, so there must exist some
i ∈ {1, . . . , n} such that∣∣Pr[1← Hi−1(A, λ)]− Pr[1← Hi(A, λ)]

∣∣ ≥ ε(λ)

n(λ)

However, this is not enough as a PRG adversary, since there is more than one PRG
in each level. Thus, we will need to hybrid again between levels in order to isolate
a single PRG output from random. However, we again cannot creat a sequence of
hybrids for each PRG in the level, since this may still be exponential.

The idea is to note that adversaries must run in polynomial time, and thus can only
make a polynomial number of queries. That is, A can make at most q(λ) queries,
where q is polynomial. Furthermore, because the tree is locally computable, A will
only see the outputs of the PRGs in the tree that are along the path for a query.

In particular, on level i, only a polynomial number of PRGs are able to be simulated
by the adversary, and thus we only need a polynomial number of hybrids across this
level. Note that this assumes the adversary ”commits” to certain nodes, but it is
possible to make this work even for adaptive queries: you can create samples of PRG
outputs beforehand, and use them as necessary.

Thus, we have obtained a PRG adversary B such that∣∣Pr[1← B(G(x)) : x← {0, 1}λ]− Pr[1← B(y) : y ← {0, 1}2λ]
∣∣ ≥ ε(λ)

n(λ)q(λ)

2

which is non-negligible because n and q are polynomial. This finishes the proof.

To combine everything together, what we have is the chain of constructions

1-bit PRG→ length-doubling PRG→ PRF→ encryption

3 OWP → 1-bit PRG

First we define one-way functions (OWFs) and one-way permutations (OWPs).

Definition 2 A one-way function is a deterministic poly-time function f : {0, 1}λ →
{0, 1}n(λ) such that for all PPT adversaries A, there exists a negligible ε such that

Pr[f(A(f(x))) = f(x) : x← {0, 1}λ] < ε(λ)

That is, given the OWF output of a random input x, it is difficult to find any pre-
image of that output.

Definition 3 A one-way permutation is a OWF that is bijective and has n(λ) = λ.

Note that this means an adversary has to find the actual random input x, since this
is the only pre-image.

It is known that OWFs can be used to create a PRG with a 1-bit stretch, but this
is beyond the scope of this course. Instead, we will prove the specific case of using
OWPs to create such a PRG. To do so, we define another notion of a ”hardcore bit”:

Definition 4 Let f : X → Y be a OWF. A hardcore bit for f is a function hc : X →
{0, 1} such that for all PPT adversaries A, there exists a negligible ε such that∣∣Pr[1← A(f(x), hc(x)) : x← X]− Pr[1← A(f(x), b) : x← X, b← {0, 1}]

∣∣ ≥ ε(λ)

That is, the hardcore bit looks like a random bit, even when the adversary gets to see
f(x) for the same input x.

We first see that if f is a OWP and it has a hardcore bit hc, then G(x) = (f(x), hc(x))
is a PRG with 1-bit stretch. The 1-bit stretch is satisfied because f is a permutation,
and security is immediately seen by the above definition of a hardcore bit. This is
harder if f is only a OWF instead, since the size of the range is no longer guaranteed,
but various tricks can be done to do this more general case as well.

Thus we see that it remains to show that any OWF has a hardcore bit.

3

Question from student: Would the XOR of all the bits in x and all the
bits in f(x) be hardcore for all OWPs?

Observation 1: XORing with the bits in f(x) is redundant, since the adversary is
given f(x). Thus the adversary could just XOR hc(x) with the bits of f(x) to obtain
the parity of only x.

Observation 2: For any fixed function hc, there exists a OWF/OWP f such that hc is
not hardcore for f . This can be proved in general, but for parity of x in particular, for
a OWF f we can define f ′ such that f ′(x) = f(x), hc(x). This is a OWF (otherwise
it can be used to create an inverter for f by simply guessing the extra bit), and hc is
not hardcore for f ′ (since hc(x) is always equal to the last bit).

Now we return to the main theorem we want to prove, i.e. that any OWF has a
hardcore bit.

Theorem 5 (Goldreich-Levin). Let F : {0, 1}n → Y be a OWF. Define F ′ : {0, 1}2n →
{0, 1}n × Y such that F ′(x, r) = r, F (x). Then 〈x, r〉 =

∑
xiri (mod 2) is hardcore

for F ′.

Note: F ′ is also a OWF, but this theorem does not give a hardcore bit for the original
function F , but the idea remains.

For the sake of contradiction assume there is a PPT adversary A that breaks the
hardcore bit, i.e. that there exists non-negligible ε such that∣∣Pr[A(r, F (x), 〈r, x〉) = 1]− Pr[A(r, F (x), b) = 1]

∣∣ ≥ ε(n)

where randomness is taken over r ∈ {0, 1}n, x ∈ {0, 1}n, and b ∈ {0, 1}.
Without loss of generality we take away the absolute values, and then we can construct
a PPT B such that

Pr[B(r, F (x)) = 〈r, x〉] ≥ 1

2
+ ε(n)

To do so, B(r, y) just runs A(r, y, b) where b is chosen randomly. If A outputs 1 then
B outputs b, otherwise if A outputs 0 then B outputs 1− b. The intuition is that A
outputs 1 with slightly higher probability if the guess is correct, and B is using A to
test if the random b is correct.

We now prove the theorem by using B to break the security of the OWF F . We
successively decrease the values of ε, thereby decreasing the strength of B and making
the problem harder.

Case 1: ε = 1/2. Then we have that B(r, F (x)) = 〈r, x〉 always. Let ei be the ith
”standard basis” bitstring, i.e. with 0s everywhere but the ith bit. Then we see that
B(ei, F (x)) = 〈ei, x〉 = xi, and thus running over all ei will completely recover x.

4

What if ε < 1/2? We see that B could possibly fail on one of the ei, so we cannot
use fixed inputs.

Case 2: ε = 1/2−1/2n. Now instead we choose uniformly random bitstrings r1, . . . rn
to calculate 〈ri, x〉. For each ri there is a 1− 1/2n chance of success, i.e. 1/2n chance
of failure, so by union bound there is a 1/2 chance that they all succeed. Assuming
success, we can then invert to recover x again.

What if ε < 1/2 − 1/2n? We see that there is high probability that at least one
of the evaluations of B is incorrect, but it is not known which ones are incorrect.
Presumably this makes recovering x impossible, so we need to work a bit harder.

Case 3: ε = 1/4 + γ, where γ is non-negligible. Using the Markov Inequality, we
claim that

Pr
x∈{0,1}n

[
Pr

r∈{0,1}n
[B(r, F (x)) = 〈r, x〉] ≥ 3

4
+
γ

2

]
≥ γ

2

The idea is that the two probabilities sum to the total probability 3/4 + γ of B being
correct.

Call x ”good” if Pr
r∈{0,1}n

[B(r, F (x)) = 〈r, x〉] ≥ 3

4
+
γ

2
for that choice of x. The above

says that the probability of a random x being good is at least γ/2, which in particular
is non-negligible.

Now assume that x is good. Let H(r) = B(r, F (x)) and consider again the ”standard
basis” bitstrings ei. For each i, choose a random string r ∈ {0, 1}n and run H(r) ⊕
H(r ⊕ ei). Note that r ⊕ ei is random because r is random, and thus both inputs to
H are individually random.

Also note that if both evaluations of H are correct, then we have that

H(r)⊕H(r ⊕ ei) = 〈r, x〉 ⊕ 〈r ⊕ ei, x〉 = 〈ei, x〉 = xi

which is what we want.

We can then prove (left as an exercise) that

Pr[H(r)⊕H(r ⊕ ei) = xi] ≥
1

2
+ γ

Then our algorithm would be: for each i, compute many guesses for the value of
xi and choose the majority. The intuition is that the majority is correct with high
probability, since each iteration has slightly higher than 1/2 probability of being
correct.

4 Next time

Next time we consider when ε is simply non-negligible to prove the general theorem.

5

	Last Time
	Proof of Length-Doubling PRG PRF
	OWP 1-bit PRG
	Next time

