
COS 533: Advanced Cryptography Princeton University
Lecture 23 (April 22, 2021)
Lecturer: Mark Zhandry Scribe: Vinny Pagano

Notes for Lecture 23

1 Grover’s Algorithm: Preliminary Setup

In this lecture, we will wrap up the cryptanalysis section. As it turns out, the period-
finding algorithm for integer factorization and solving the discrete logarithm problem
isn’t quite the end of the picture. Namely, we shall introduce Grover’s algorithm and
discuss its advantages, limitations, and implications.

1.1 Preliminary Formulation of Problem

Problem: Consider a function f : [N] → {0, 1}, and suppose for now that we have
a promise that there is exactly one x ∈ [N] such that f(x) = 1.

Goal: Find x.

Classically, we can easily solve this problem in O(N) time via a brute-force search,
where we try every single input. Note that this is the best we can do generically; if
we know nothing about the structure of f and are limited to querying f on various
inputs, then in expectation we see that

E[number of queries to find x] =
N∑
i=1

Pr[guessing x after i queries]

=
N∑
i=1

i

N

=
1

N
· N · (N + 1)

2

=
N + 1

2
.

As we will discuss later, Grover’s algorithm can solve this problem in O(
√
N) time.

We now present a more generalized version of the problem, which is followed by a
description of the algorithmic procedure.

1

1.2 Generalization of Problem

Problem: Consider a function f : [N] → {0, 1}, and suppose there exist exactly r
distinct values x1, . . . , xr ∈ [N] such that f(xi) = 1 for i ∈ [r].

Goal: Find xi for some i ∈ [r].

As before, we can solve this problem classically in O(N/r) time via a brute-force
search, and this is the best we can do generically. However, Grover’s algorithm can
solve this problem in O(

√
N/r) time.

Remark 1 Note that we don’t need to know r. The procedure outputs a random xi.

2 Why is Grover’s Algorithm Important?

For one, we get a quadratic speed-up over brute-force search for all NP problems.
Why is this the case? Well, for any instance of an NP problem we can phrase it as a
function f , where the input to f is a witness. We can do a brute-force search to find
the witness and we will have

run-time ∝ length of witness.

For some problems the brute-force method is the best classically, but Grover’s algo-
rithm implies that quantum mechanically we can improve our run-time. NP presum-
ably remains hard for quantum computers, but for cryptography what this means is
that for many constructions1 in symmetric or secret key cryptography the best known
algorithm is brute-force. The classical key sizes are set so that the best attacks take
time 2128, 2256, etc. typically. What Grover’s algorithm means is that now the best
attacks run in time 264, 2128, etc. which are twice as good as the best classical attacks.
To attain an equivalent security to what we have in the classical case, we must double
our key sizes. If some key has length 128 and we conjecture that the best security
level from classically generated attacks is 2128, we are not guaranteed security from
a quantum attack using Grover’s algorithm. In order to defeat its attack you have
to increase the security level to 2256. Hence, Grover’s algorithm is important from a
practical perspective and for cryptography in a quantum world.

3 Explanation of Grover’s Algorithm

Start with a uniform superposition denoted

|s〉 =
1√
N

N−1∑
x=1

|x〉.

1Consider NIST standardized hash functions, for instance.

2

|s〉

|y〉

θ

Figure 1: Initial setup of Grover’s algorithm.

If we think of N as a power of 2, we can obtain this by applying Hadamard to the
all-zero string |0〉 as we did for Simon’s algorithm2.

3.1 Preliminary Problem

First, consider the case where we have a unique solution y. We only need to consider
two dimensions: one spanned by the unique solution and the other being |s〉. Note
that the latter is a vector which is not quite orthogonal to |y〉, since their inner
product is 1/

√
N . We consider space spanned by these two vectors.

What our algorithm does is the following. Let θ denote the angle between |s〉 and
the x-axis as shown in Figure 1. Note that θ can be computed explicitly using
trigonometry. So what Grover’s algorithm does is gradually move from |s〉 to |y〉
in steps of angle 2θ (in each iteration). The point is that θ is O(1/

√
N) in the

asymptotic limit as N is large, but the angle between |s〉 and |y〉 is a constant less
than π/2 radians, so the number of iterations is O(

√
N).

|s〉

|y〉

θ

θ

2θ

After each iteration

Figure 2: Grover’s algorithm.

Main idea: if we can jump 2θ in every step, then the number of iterations is O(
√
N).

Let’s look at what one iteration does. Each iteration is going to have two steps:

2In general we may apply the Quantum Fourier Transform over the appropriate modulus to the
|0〉 to get |s〉.

3

|s〉

|y〉

θ

θ

Figure 3: Grover’s algorithm after step 1.

1. Step 1. In terms of standard basis vectors, we will map |y〉 7→ −|y〉 and
|x〉 7→ |x〉 for all x 6= y. In other words, all terms in the quantum state will stay
the same except the component in the y-direction, which changes sign.

(a) Phase kickback. If we have state
∑

x αx|x〉, we prepare a new qubit

H|1〉 =
|0〉 − |1〉√

2

and append it to the system. This is Hadamard applied to |1〉.
(b) Apply Uf , our unitary use3 of f that we derive from f :

• When x is not y, the unitary will XOR the output of f into the response
system. By construction this is 0 so nothing happens.

• When x is y, f(y) = 1 and when we XOR it with the state and we get
a minus sign. Hence for this case we return

−αy|y〉
|0〉 − |1〉√

2
.

Therefore, in total we have∑
x

αx|x〉 =
∑
x

αx|x〉(−1)f(x)
|0〉 − |1〉√

2
.

We introduce a minus sign for all x where f(x) = 1. We can discard
many qubits. So we turn our unitary into a phase unitary which uses f to
determine the phase. So in terms of the picture, everything orthogonal to
|y〉 doesn’t change, the one orthogonal to |y〉 reflects along the x-axis after
step 1 since we negate the component.

3Note that f is not invertible, so to turn it into something invertible we apply a unitary that has
the input state and output state.

4

At a first glance this seems bad since we made negative progress, but we now
combine this with step 2, which will get us back on the right track.

2. Step 2. We perform a reflection around |s〉.

(a) First, we apply the Hadamard transformation H⊗n (or QFT). We have:

H⊗n|s〉 → |0n〉,
H⊗n|ψ〉 → |φ〉, where |ψ〉⊥|s〉 and |φ〉⊥|0n〉.

(b) Send |0n〉 7→ |0n〉 and |x〉 7→ −|x〉 for x 6= 0n.

Anything orthogonal to |0n〉 picks up a minus sign, and the component in
the direction of |0n〉 stays the same.

(c) Apply H⊗n again and note that H ·H = id. So under H⊗n we have:

H⊗n|0n〉 → |s〉,
H⊗n − |φ〉 → −|ψ〉, where |ψ〉⊥|s〉 and |φ〉⊥|0n〉.

Observe that from (2b) the |φ〉 in (2a) picks up a minus sign.

So we accomplish exactly what we wanted! This is the algorithm up to some subtleties.

For the algorithm described above, we denote the result of the nth iteration by |sn〉,
where |s0〉 := |s〉. So for n > 0 starting the algorithm with |sn〉 (instead of |s0〉)
allows us to iterate the procedure.

3.2 Generalization of Problem

If there are many solutions as in subsection 1.2, we can change the y-axis to become
a uniform superposition over all solutions

1√
r

∑
y : f(y)=1

|y〉.

Note that the starting vector is still |s〉. The exact same phenomenon happens, except
we have θ ≈ 1/

√
N/r.

3.3 Technicalities of Grover’s algorithm

• Why can’t we reflect around |s1〉? The motivation behind this question is
that, if we can do this, then we would make even more progress, making the
algorithm even faster. The problem would be how to implement the reflection.

5

We can do it around |s〉 by Hadamard transformation, which is a constant
time operation. On the other hand, in order to reflect around |s1〉 we need
a map from |s1〉 → |0n〉. But this map itself requires running one iteration
of Grover’s algorithm. More generally, reflecting on |sn〉 requires n iterations.
Stated simply, there is no easy way to reflect around a vector besides computing
it from scratch. This is not an issue with the analysis or the algorithm. There
is a bound that says that, if f is given as a black box, meaning we have oracle
access to the unitary that computes Uf , then we need at least Ω(

√
N) iterations.

• What happens if θ does not divide π/4 radians? If this happens, then
we never hit |y〉 exactly. We will eventually loop around if we keep applying
iterations of Grover’s algorithm. Therefore, as a first pass we need to know when
to stop, and we are never going to be exactly at |y〉. The number of iterations
we need is dπ/4θe. If we measure our state we will get |y〉 with probability
1−O(1/

√
N) because θ ≈ 1/

√
N .

• What happens if we don’t know r? In order to move our state we need
to know r, and we might overshoot and wrap around. We need to stop the
algorithm at the right point. While in general we do not expect to know r,
we can try to find it. To achieve this, run Grover’s algorithm assuming r is
a sufficiently high power of 2 and halve r after each iteration. One of these
iterations will be within a factor of 2 of the correct r, which is close enough.
Observe that N/r is an increasing power of 2, and in a geometric series the
last term dominates. Hence, once you hit the right r, the running time will be
determined by that r. This means that we can find r and the overall running
time will still be O(

√
N/r).

4 Quantum Cryptography

As we have seen in previous lectures, post-quantum cryptography is classical cryp-
tography which is secure under quantum attacks. (A rather unfortunate naming
convention.) Quantum cryptography, on the other hand, concerns itself with actual
quantum protocols. We like these since, as we have already seen, using the strange
features of quantum computing allows us to achieve things that were once not pos-
sible. Chronologically, the first instance of quantum cryptography is through the
concept of quantum money.

6

4.1 Quantum Money

Recall that we alluded to quantum money in a previous lecture as an application of
no-cloning. Define 4 states |φb,c〉 = Hb|c〉 for b, c ∈ {0, 1}.4 We know by no-cloning
that it is impossible to clone |φb,c〉 for unknown b and c because these four vectors are
not orthogonal. (Recall that if you have non-orthogonal vectors you cannot clone.)

|φ0,1〉
|φ1,0〉

|φ0,0〉

|φ1,1〉

Figure 4: Pictorial setup for quantum money scheme.

For the quantum money scheme, we have a banknote. In particular, we consider
a serial number (b, c) and a note |φb,c〉. To verify the banknote against the serial
number, we take as input the serial number and a supposed state |φ〉 that may or
may not be the right state. We define Verify as follows.

Verify((b, c), |φ〉) will:

• measure Hb|φ〉 → |c′〉.

• output 1 (accept) if and only if c′ = c.

On correctness and security of quantum money scheme

Note that Hb|φb,c〉 = |c〉. Thus, if we were to set |φ〉 = |φb,c〉 so that we perform
Verify((b, c), |φb,c〉), then when we measure we get |c〉 back and our note is correctly
accepted. However, we shall show that security of our scheme is currently weak.

Suppose an adversary is given |φb,c〉 but not (b, c). They try to split the note into two
possibly entangled states |φ1〉, |φ2〉. If we run Verify on both, getting b1 and b2, then

Pr[b1 = b2 = 1] = 5/8.

This is a consequence of no-cloning. One attack is you make it guess b′ for b, measure
Hb′ |φb,c〉 → c′, and then construct the state |φb′,c′〉 twice and this is what it outputs.

4Under this notation, we apply Hadamard if and only if b 6= 0.

7

If b′ = b (occurs with probability 1/2), the adversary wins with probability 1 since
they recover c exactly. If b′ 6= b, then c′ is random, and the vector they get is at a 45
degree angle from the right quantum state. And what this means is that each Verify
will pass with probability 1/2. So the overall attack probability is

Pr[b1 = b2 = 1] =
1

2
· 1 +

1

2
·
(

1

2
· 1

2

)
=

5

8
.

Remark 2 One can slightly improve this to 3/4.

The main point is that there is a constant probability of attack, so this is not a
particularly good money scheme since there is a constant probability that you can
clone. However, we can boost security by modifying our quantum money scheme.

Boost security: Repeat many times so your serial number is a vector

~b ∈ {0, 1}n,~c ∈ {0, 1}n, |φc,b〉 = |φb1,c1〉|φb2,c2〉, . . .

Remark 3 It can be shown that under this modified scheme the best attack has prob-
ability Cn for some constant C ∈ (0, 1), which is exponentially small.

This concludes the basic quantum money scheme.

5 Next Time

What remains to be discussed are the limitations of quantum money. Specifically, the
fact that the serial number needs to be secret. We shall also review some extensions.
Essentially, there is a whole world out there of potential cryptographic applications
that rely on the unclear inability of quantum states, which is something that we
don’t have classically; and this, in principle, can be used to realize all sorts of novel
cryptographic applications. This will be the topic for the next time.

8

	Grover's Algorithm: Preliminary Setup
	Preliminary Formulation of Problem
	Generalization of Problem

	Why is Grover's Algorithm Important?
	Explanation of Grover's Algorithm
	Preliminary Problem
	Generalization of Problem
	Technicalities of Grover's algorithm

	Quantum Cryptography
	Quantum Money

	Next Time

