
COS 533: Advanced Cryptography Princeton University
Lecture 21 (April 20)
Lecturer: Mark Zhandry Scribe: Alex Lopez

Notes for Lecture 21

1 Notation and Formalism

Introducing the following quantum notation/formalism to be used in the last few
lectures.

• |ψ〉 denotes a general quantum state. These are unit norm column vectors in
Cn.

• 〈ψ| is the conjugate transpose of |ψ〉, that is 〈ψ| = |ψ〉†.

• 〈ψ|φ〉 denotes the inner product of |ψ〉 and |φ〉.

• |x〉 for x ∈ [n], denotes the x’th standard basis vector (when using a greek
letter, it is usually refers to a general state as above).

The following are the basic quantum operations that we can do:

• Applying a unitary transformation to any quantum state. We say that a trans-
formation U ∈ Cn×n is unitary if U †U = I, where † denotes the conjugate
transpose of the matrix. Applying a unitary transformation U to a quantum
state |ψ〉 results in the quantum state U |ψ〉.

• Measure operation. A measurement of a quantum state |ψ〉 is a probabilistic
process where the probability that |ψ〉 7→ |x〉, that is, the measurement yields
|x〉 is | 〈x|ψ〉 |2. Note that this is a well defined probability distribution as |ψ〉
is a vector of unit norm.

We can also consider composite systems, where for |ψ〉 ∈ Cn and |ϕ〉 ∈ Cm, the joint
state is given by |ψ〉 |ϕ〉 ∈ Cn×m. This is the tensor product of |ψ〉 and |φ〉. If we
write

|ψ〉 =
∑
x∈[n]

αx |x〉 and |φ〉 =
∑
y∈[m]

βy |y〉

then the joint state is

|ψ〉 |φ〉 =
∑

(x,y)∈[n]×[m]

αxβy |x〉 |y〉

1

The system we will usually work with is

C2n = C2⊗C2⊗ . . .⊗ C2︸ ︷︷ ︸
n times

each of the systems C2 will represent a single qubit.

Note. We can also perform partial measurements on composite systems. When doing
a right partial measurement on a state |ψ〉 =

∑
x,y αx,y |x, y〉, an output y0 is obtained

and the state collapses to a sum of states ‘compatible’ with the measurement of the
y0. That is, after measuring and obtaining y0 from the state |ψ〉, we get the collapsed
state

1
√
ρy0

∑
x

αx,y0 |x, y0〉

where ρy0 is a renormalization constant defined as

ρy0 =
∑
x

|αx,y0|2

and the probability of having measured y0 is ρy0 .

Definition 1 (Entanglement). We say that a state |τ〉 ∈ Cn×m in a composite system
is entangled if |τ〉 cannot be written as a product state. Explicitly, there do not exist
|ψ〉 ∈ Cn and |φ〉 ∈ Cm such that |τ〉 = |ψ〉 |φ〉. For such a state |τ〉, we say that it is
entangled.

Remark. In general, a state in a larger composite system |τ〉 ∈ Cn×m cannot be
written as |ψ〉 |φ〉 ∈ Cn⊗Cm (a product state) for |ψ〉 ∈ Cn and |φ〉 ∈ Cm.

This notion of being entangled in the quantum setting is the analogue of correlation
in the classical setting.

Example 2. Consider the following system with two qubits.

1√
2
|0〉 |0〉+ 1√

2
|0〉 |1〉 = |0〉

(
1√
2
|0〉+ 1√

2
|1〉
)

We see that the two qubits are not entangled, as we wrote the state as a product of
two states. In this case, we get the quantum analogue of a probability distribution
where the first bit is always 0 and the second bit is uniformly random.

However, the state
1√
2
|0〉 |0〉+ 1√

2
|1〉 |1〉

is entangled. Here we get the quantum analogue of a probability distribution where
we take a uniformly random bit and repeat it, as we are guaranteed that the two bits
will be equal.

2

As we are concerned about the involvement of quantum computers in cryptography,
we must have a notion of efficiency of such a computer. We defined the notion of
an operation by applying a unitary transformation. However there are uncountably
many unitary matrices, so there is most certainly no way to compute an arbitrary
unitary transformation efficiently. Therefore we take an approach inspired by the
classical circuit model. In such case, a function is efficiently computable if there is
a circuit of polynomial size that computes the function, using gates from some finite
set.

It may be tempting to define efficient computation in the quantum setting as above.
Begin by fixing a finite ‘gate’ set of unitary matrices over 2 qubits and considering all
computations that can be represented as polynomial sized circuits using gates from
this finite gate set. However, the number of such possible circuits is countable. On
the other hand, the number of possible unitary matrices is uncountable. Even by
removing the polynomial sized restriction, there are is an uncountable set of uni-
tary transformations that are not computable under this definition, a pitfall which
we certainly want to avoid. This motivates the following definition by tolerating
approximations to unitary transformations:

Definition 3 (Quantum setting efficient computation). Fix a finite set of unitaries
over 2 qubits, this will be the finite ‘gate’ set Γ. We say that a unitary transformation
U is computable if we can approximate U with arbitrary precision with circuits using
gates from Γ. Moreover, we say that a unitary transformation U is efficiently com-
putable if it is computable and such approximation to arbitrary precision are with
polynomial sized circuits with gates in Γ.

Example 4. Any classical computation can be performed efficiently. We might ex-
pect that for a classical function f , we find a unitary matrix Uf representing f that
takes a state |x〉 to Uf |x〉 = |f(x)〉. Nonetheless, in general such functions f are
information theoretically not invertible, whereas all unitary transformations are.

The model for classical computation does the following. Given a classical function
f : {0, 1}n → {0, 1}m, define Uf a unitary such that

Uf |x, y〉 7→ |x, y ⊕ f(x)〉

where the notation |x, y〉 denotes |x〉 |y〉. It is easy to check that U †fUf = I and hence
Uf is in fact a unitary matrix. If f is efficiently computable in the classical setting,
then there is a polynomial sized quantum circuit that computes Uf .

Definition 5. The Hadamard gate H acts on a basis vector |b〉 for b ∈ {0, 1} by

H |b〉 = 1√
2
|0〉+ (−1)b · 1√

2
|1〉

the definition is then extended to an arbitrary |ψ〉 by the bilinearity property. It
satisfies H2 = I the identity.

3

Similarly for a state in a composite system |ψ1, . . . , ψr〉, define

H⊗r |ψ1, . . . , ψr〉 =
(
H |ψ1〉

)
· · ·
(
H |ψr〉

)
Remark. Note that the Hadamard transformation does not have the form of Uf (there
is no classical analogue of the Hadamard).

Another example is the phase gate. The gate takes a quantum state α |0〉 + β |1〉 7→
α |0〉+ βeiθ |1〉 (this example we will probably not need in this course).

Definition 6 (Quantum Fourier Transform). As a generalization of the Hadamard
gate, the quantum fourier transform (QFT) is defined on the basis vectors |x〉 for
x ∈ {0, . . . , n− 1} by

QFTn |x〉 =
1√
n

n−1∑
y=0

wxyn |y〉

with wn a primitive n-th root of unity. We may take wn = exp(2πi
n

). It is the case
that QFTn is a unitary transformation and the inverse QFT−1n satisfies

QFT−1n |x〉 =
1√
n

n−1∑
y=0

w−xyn |y〉

where the only difference is the conjugate transpose (in this case equivalent to the
inverse) of the primitive roots of unity.

2 Simon’s Problem

Suppose we have a function f : {0, 1}n → {0, 1}m and given a promise that there
exists an s ∈ {0, 1}n \ {(0, . . . , 0)} such that

• f(x) = f(x⊕ s) for all x ∈ {0, 1}n.

• f(x) 6= f(y) if y /∈ {x⊕ s, x}.

With this setup, the task is to find this binary string s.

We have the following quantum algorithm for the problem.

1. Initialize a system of n+m qubits to |0n, 0m〉.

2. Apply H to each qubit of the left subsystem. This results in a left subsystem
as

(H |0〉)n =
(

1√
2
|0〉+ 1√

2
|1〉
)n

=

(
1√
2

)n ∑
~x∈{0,1}n

|~x〉

4

where this vector notations represents the system, if ~x = (b1, . . . , bn) with bi ∈
{0, 1} then |~x〉 = |b1, . . . , bn〉.

3. Apply Uf to the resulting state, where Uf is the unitary for the classical function
f . This produces the state (

1√
2

)n ∑
~x∈{0,1}n

|~x, f(~x)〉

4. Measure the right subsystem (partial measurement). This gives some f(~x0) = y0
and the left subsystem state collapses to

1√
2

(|x0〉+ |x0 ⊕ s〉)

where we get this y0 uniformly at random (we get y with probability 1
2n−1 if the

y is in the range of f).

5. Apply H to each qubit of the left subsystem state. In its most general form,
this transformation yields

H⊗n |x〉 =

(
1√
2

)n∑
y

(−1)x·y |y〉

Where above we interpret the x, y as vectors instead of scalars. In our case we
get

H⊗n
(

1√
2
|x0〉+ 1√

2
|x0 ⊕ s〉

)
=
(

1√
2

)n
·

(∑
y

(−1)x0·y |y〉+
∑
y

(−1)(x0⊕s)·y |y〉

)
=
(

1√
2

)n∑
y

[(−1)x0·y + (−1)(x0⊕s)·y] |y〉

=
(

1√
2

)n∑
y

(−1)x0·y[1 + (−1)s·y] |y〉

where we have that the coefficient of |y〉 is

(−1)x0·y[1 + (−1)s·y] =

{
2(−1)x0·y if s · y ≡ 0 mod 2

0 if s · y ≡ 1 mod 2

thus, our state becomes

2

(
√

2)n
·

∑
{y|y·s≡0 (2)}

(−1)x0·y |y〉

and measuring this state, we get a uniformly random y such that s · y ≡ 0
mod 2.

5

We then repeat the steps (1) to (6) many times (∼ n times) to obtain multiple random
y’s such that y · s ≡ 0 mod 2. With high probability on drawing random vectors
y1, . . . , yr such that yi · s ≡ 0 mod 2, we can solve for a unique vector s using linear
algebra.

One might ask if there is a classical algorithm to solve this problem. If f is given as a
circuit, then in some sense it is hopeless to prove anything. However, if the classical
algorithm is given only oracle access to f , then except with negl(n) probability, it is
impossible to find s. The idea of the proof centers on taking random f that satisfy
the promise, and under classical queries, outputs of f are random and independent
unless the query occurs on x and x⊕ s.
On the other hand, Simon’s algorithm (the algorithm presented above in the quantum
setting) only requires “oracle access” to Uf . Here, quantum setting oracle access
means we get to only apply Uf . Thus we have found a separation between what is
achievable in the quantum setting and what is achievable in the classical setting.

3 Attacks on Crypto Problems

Simon’s problem is a special case of period finding, sometimes also referred to as
hidden (abelian) subgroup problem which we now explain. If we have an additive
group (G,+) with some subgroup H ≤ G and a function f : G→ {0, 1}m such that

1. f(g + h) = f(g) for all h ∈ H

2. f(g + y) 6= f(g) if y /∈ H

The goal is to find this subgroup H.

Note. This is a generalization of Simon’s problem. We can view Simon’s problem as
the hidden abelian subgroup problem with G = Zn2 and H = {0, s}.

We can solve this problem following the steps in Simon’s algorithm described above,
however we replace the Hadamard gate H by an appropriate QFTn and a bit of extra
work on a few details.

The relevance to cryptography comes in when we realize factoring and the discrete
log as period finding problems.

For factoring, given g and N to factor, we let G = Z/NZ and define the function
fg(a) = ga mod N . The key comes in when we realize that, for g a quadratic

residue, the period of the function fg is even, and g
1
2
period(fg) mod N is a square root

of 1. With high probability, we get that this square root is not the trivial pair of
square roots ±1 mod N . If we get such a nontrivial square root u, then we can see
by the Chinese Remainder Theorem that gcd(u − 1, N) is a nontrivial factor of N .

6

Explicitly with N = pr11 · · · p
rk
k , under the CRT, a non-trivial square root u of 1 is (u1

mod pr11 , . . . , uk mod prkk) where ui are not all equal to 1 or -1. That is, some ui are
1, some are −1. Hence u− 1 is divisible by only by a nontrivial factor of N .

For the discrete log, given g and h = ga both in some group G of order p, define the
function

fgh(r, s) = grh−s

here the period finding will happen in the group Z2
p, hence (r, s) are elements in Z2

p.
The subgroup for this function in the period finding problem is

H = {(ax, x) | x ∈ Zp}

Hence if we solve the problem and have any nonzero element of H, we can recover a
by dividing the left coordinate by the right coordinate.

4 Next time

Next time we will discuss a little more on quantum attacks on cryptography and later
move on to the final part of the course, where we use quantum mechanics to do new
cryptographic constructions.

7

	Notation and Formalism
	Simon's Problem
	Attacks on Crypto Problems
	Next time

