
COS 533: Advanced Cryptography Princeton University
Lecture 2 (February 4, 2021)
Lecturer: Mark Zhandry Scribe: Mark Zhandry

Notes for Lecture 2

1 Last Time

Last time, we defined formally what an encryption scheme is, as well as a pseudoran-
dom function. We also saw how to build encryption from PRFs.

2 This Time

Starting today, and for the next couple lectures, we will show how to construct en-
cryption and other cryptographic applications from weaker tools. In particular, we
will show:

1. PRGs (pseudorandom generators) → PRFs

2. OWFs (one-way functions) → PRGs

3. OWFs, or tools implied by them, → digial signatures

We won’t be able to fully complete all the arrows, but we will give an indication of
how it might be done. Today, we will show the first step, namely building a PRF
from a PRG.

3 PRFs

A PRF is a keyed function that looks like a random function if you never get to
see the key. That is PRF is a deterministic polynomial time computable function
PRF : {0, 1}λ × {0, 1}n(λ) → {0, 1}m(λ), with the following security property.

Let A be an adversary. Let PRF-EXPb(A, λ) be the following experiment on A, pa-
rameterized by a bit b:

1. A interacts with a challenger, denoted Ch.

2. At first, if b = 0, Ch chooses a random key k
$← {0, 1}λ. If b = 1, Ch initializes

an empty list L.

1

3. Next, A sends the challenger an input x ∈ {0, 1}n(λ). Ch responds as follows

• If b = 0, Ch responds with y ← PRF(k, x).

• If b = 1, Ch looks for a pair (x, y) in L. If it finds an (x, y), it responds
with y. Otherwise, it generates a random y and adds the pair (x, y) to L.
Then it responds with y.

4. A can repeat step 3 as many times as it wishes. We will charge A one unit of
time for every time it repeats step 3.

5. Finally, A outputs a guess b′ for b. b′ is the output of PRF-EXPb(A, λ)

Notice that in the b = 1 case, Ch is effectively providing A with a truly random
function O where all outputs are chosen independently and uniformly at random. In
the b = 0 case, Ch is providing A with the PRF on a random key k. A’s goal is to
distinguish the two cases.

Definition 1 An PRF PRF secure if, for all PPT adversaries A, there exists a neg-
ligible function ε such that

| Pr[1← PRF-EXP0(A, λ)]− Pr[1← PRF-EXP1(A, λ)] | < ε(λ)

4 PRGs

Next, we turn to constructing PRFs from a weaker object called a pseudorandom
generator, or PRG. A PRG is a deterministic polynomial time function G : {0, 1}λ →
{0, 1}λ+s(λ) for some s(λ) ≥ 1. This means that G expands its input. For security,
we ask that outputs of G look as if they were random.

Definition 2 A function G is a secure PRG if, for all PPT adversaries A, there
exists a negligible function ε such that

| Pr[A(G(x)) = 1 : x
$← {0, 1}λ]− Pr[A(y) = 1 : y

$← {0, 1}λ+s(λ)] | < ε(λ)

Notice that G can only take on at most 2λ outputs, smaller than the 2λ+s(λ) points
in the co-domain. Therefore, it is impossible for G’s outputs to be truly random.
Nonetheless, PRG security says that the outputs look random to any polynomial-
time adversary.

2

5 Extending the Stretch of PRGs

As a first step toward understanding how to construct PRFs from PRGs, we will
show how to extend the stretch (s(λ)). In particular, we will show that from a PRG
with stretch s = 1, we can construct a PRG of any desired (polynomial) stretch.

Let G : {0, 1}λ → {0, 1}λ+1. We will write G(x) = (G0(x), b(x)) where G0(x) is λ
bits, and b(x) is 1 bit.

For any s, we now construct a new PRG G′ : {0, 1}λ → {0, 1}λ+s. G′(x) works as
follows:

• Define x0 = x.

• For i = 1, . . . , s, let xi = G0(xi−1) and oi = b(xi−1).

• Output (xs, o1, . . . , os).

The construction clearly is deterministic and has the desired stretch. We now prove
security.

Theorem 3 If G is a secure PRG, then so is G′.

We prove security via a hybrid argument. Let A be a supposed adversary running in
polynomial time and ε a non-negligible function such that

| Pr[A(G′(x)) = 1 : x
$← {0, 1}λ]− Pr[A(y) = 1 : y

$← {0, 1}λ+s(λ)] | < ε(λ)

Define the following hybrid experiments. Hybrid 0 means y = G′(x) for a random
x ∈ {0, 1}λ. In hybrid Hybrid 1, we replace x1 and o1 with uniform random strings,
rather than computing them as (x1, o1) = G(x). All subsequent steps are identical
to G′, and the y fed to A is xs, o1, . . . , os. More generally, in Hybrid i, we sample
uniformly random xi and o1, . . . , oi. Then we continue to compute xj = G0(xj−1), oj =
b(xj−1) for j = i+ 1, . . . , s. y is then set to xs, o1, . . . , os.

Note that Hybrid s is the setting where y is uniformly random. Therefore, A dis-
tinguishes Hybrid 0 from Hybrid s with advantage ε. This means there is some
integer i ∈ {1, . . . , s} such that

| Pr[1← Hybridi(A, λ)]− Pr[1← Hybridi−1(A, λ)] | ≥ ε(λ)

s(λ)

We now are basically done, as Hybrid i−1 and Hybrid i differ by a single application
of G. In particular, we can construct an adversary B for G as follows: On input
y ∈ {0, 1}λ+1, let xi be the first λ bits of y, and oi be the last bit. Let o1, . . . , oi−1 be

3

random. Then compute xj, oj for j > i as in G′, finally producing z = (xs, o1, . . . , os).
Then run A(z), and output the output of A.

If y is uniformly random, then z is distributed exactly as in Hybrid i. On the
other hand, if y = g(x) for a random x, then z is distributed exactly as in Hybrid
i− 1. Therefore, the advantage of B in breaking G is exactly the advantage of A in
distinguishing Hybrid i− 1 and Hybrid i, namely at least ε/s. This completes the
proof.

6 PRFs from PRGs

We will not formally define the actual PRF algorithm, but instead will describe it
in words. We will assume G is length-doubling, meaning s(λ) = λ. First, let’s
forget efficiency for the moment. The PRF PRF works as follows. It takes the key
k ∈ {0, 1}λ, and applies G. The result is a 2λ-bit string. PRF splits the string in
half into two λ-bit strings. Then it applies G separately to both halves, obtaining a
4λ-bit string. PRF splits this into 4 λ-bits strings, and applies G to each string. It
continues in this way for n(λ) steps, for any desired polynomial λ.

The result is a 2n(λ)×λ-bit string. PRF will interpret this string as 2n(λ) separate λ-bit
strings. The output of PRF on input x with be the xth string in this list. Therefore,
PRF has inputs of length n(λ) and outputs of length λ.

It will be useful to think of the PRF computation as a tree: at the root is the PRF
key k. The children of a node containing x are the first and second half of G(x). The
tree has n+ 1 levels and 2n leaves. The leaves are the outputs of the PRF.

As described, PRF runs in time roughly 2n(λ), which is exponential.

Question: How to compute each block locally in time polynomial in n, without
computing the entire list of outputs?

Theorem 4 If G is a secure PRG, then the construction above is a secure PRF

This PRF construction can be seen as another form of length extension for PRGs. One
attempt to prove this theorem would be to try and adapt the length extension proof
to this setting. One would gradually replace each PRG application with random,
until the entire tree were entirely random. Unfortunately, this will not work. As
there are exponentially-many PRG applications, the number of hybrids will end up
being 2n(λ), resulting in an exponential loss in the security reduction. The result is an
adversary for B with exponentially-small advantage (even if the starting adversary A
has high advantage), which would not give a contradiction. Next time, we will see a
more careful proof that overcomes this difficulty.

4

	Last Time
	This Time
	PRFs
	PRGs
	Extending the Stretch of PRGs
	PRFs from PRGs

