
COS 533: Advanced Cryptography Princeton University
Lecture 19 (April 13, 2021)
Lecturer: Mark Zhandry Scribe: Alan Chung

Notes for Lecture 19

1 Recap from Last Lecture

Last time, we saw how to convert any function in NC1 to any matrix branching
program. We recall the definition below:

Definition 1 (Matrix Branching Program) A matrix branching program consists
of {Bi,b}i∈[l],b∈{0,1}, B ∈ Zw×wq , s ∈ Z1×w

q , t ∈ Zw×1q .We call l the length of the program
and w the width of the program. The program takes some function inp : [l] → [n],
where n is the number of input bits. Then, the program is evaluated as

Eval(x) := s ·
l∏

i=1

Bi,xinp(t)
· t,

where x is some input bit string, and we want to know whether this product is 0
(mod q). The input function will determine which matrix we choose from each column,
which is represented by a bit in x.

2 Re-randomization

Suppose that we have l columns of matrices {Aib}i∈[l],b∈{0,1}, and each matrix is in
Rw×w. As in the definition above, suppose that the beginning vector is sT , and the
end vector is t. Then, the scheme is as follows:

1. Choose l+1 random invertible matrices in Zw×wq . Note that for large q, a random
matrix is invertible with high probability. To see this, look at the determinant
of a random matrix, and it will be nonzero with overwhelming probability.

2. Map ({Aib}, s, t, inp)→ ({R−1i−1AibRi}, sTR0, R
−1
l t, inp).

Intuitively, we generate these random matrices to “mask” the original matrices. We
note that in the product, the R’s will cancel out, so that the iterated product is
unchanged, which implies that the functionality of the program will be unchanged.

1

For now, we will assume that inp is independent of the program, but it will depend on
the program size, number of input bits, etc. Actually, this can be assumed WLOG by
inserting “dummy columns” of identity matrices. Considering the following: suppose
we have some Matrix Branching scheme with 4 columns, and ind(1) = 1, ind(2) =
2, ind(3) = 4, ind(4) = 2, meaning that for the first column, to choose which matrix
we use, take x1 ∈ {0, 1}. Instead of ind, we can define some othe function ind′ so
that ind′(1) = 1, ind′(2) = 2, ind′(3) = 3, ind′(4) = 4, ind′(5) = 1, ind′(6) = 2,
ind′(7) = 3, ind′(8) = 4. In other words, we have that the original subsequence 1242
as a substring of the new sequence 12341234, with new numbers inserted at indices
3, 5, 7, 8, where indexing starts at 1. Then we can convert the old Matrix Branching
Process into a new one, where at for the columns 3, 5, 7, 8, we can just let the matrices
be the identity matrix. This will not change the functionality of the program, but
the point is that the ind function does not need to depend on the specific program,
since we can modify the program accordingly to have the same functionality.

3 Why is Re-Randomization Useful?

It turns out that this gives a garbled circuit for NC1 computations. We can write
the labels as

Lib = (Ajb for j with inp(j) =i), s, t.

Then for x ∈ {0, 1}n, {Lixi} allows for computing BP(x). Because of the multi-
plication by random matrices, it turns out that {Li,xi}, s, t are uniformly random,
conditioned that the product

sT
l∏

i=1

Li,xinp(i)
· t =

{
0 if BP (x) = 1

1 if BP (x) = 0

This actually gives an information-theoretic garbled circuit. This is sort of like a
1-time secure obfuscation, which we will show implies a many-time secure scheme.

4 One-time ⇒ Many-time

Question: What if we just give out all the labels? Suppose we converted the original
program into a Matrix Branching program, and possibly added “dummy matrices”
as above to hide any information that the ind function gave. Then, we do this ran-
domization. Then, you could compute the program on all inputs, but the question
is: what kind of security could it provide? The answer is, it wouldn’t provide full
security, but there are only a couple of ways we know how to attack it.

2

Consider some reasonable attacks. Define Âib = R−1i−1AibRi. Then we can do the
following:

1. Consider Âi0Â
−1
i1 = R−1i−1Ai0A

−1
i1 Ri, so this LHS is a matrix that is similar to

Ai0A
−1
i1 , and similar matrices have the same eigenvalues. So now if Ai0 and Ai1

are dummy matrices, then Ai0A
−1
i1 = I. Otherwise, if Ai0, Ai1 were not dummy

matrices, then Ai0A
−1
i1 6= I with high probability. In particular, for the matrices

given by Barrington’s Theorem, the matrix will be a permutation matrix, and
its eigenvalues will be the primitive roots of unity. Then, we can figure out where
the dummy matrices are, which could reveal information about the program.

2. ”Mixed input attacks:” Suppose that we have some Matrix Branching program
with start vector sT , end t, and matrices Mib for i ∈ [4]. Now suppose that the
input string is 1242, meaning that we are supposed to multiply the matrices
M1x1 , M2x2 , M3x4 , M4x2 , where x = 0011. But suppose we cheat, and instead
take M10, M20, M31, M41 (the point is that we were supposed to choose the
index 0 matrices for rows 2 and 4, but we choose the 0 and 1 matrices instead).
But if we do this, we are learning something about the program that doesn’t
exactly correspond to a way that you are supposed to evaluate the program,
which can yield some information.

It turns out that our techniques to block these attacks will essentially block all attacks.

5 Multilinear Maps

We consider a generalization of bilinear maps. Suppose that we have some value l,
which we call the ”multilinearity.” Then ∀S ∈ [l], we have some group GS, with some
generator gs, so gasg

b
s = ga+bs . Now suppose we have some map

e : GS ×GT → GS∪T , e(gaS, g
b
T) = gabS∪T ,

where above S ∩ T = ∅. We call this an asymmetric multilinear map. Previously, we
had l = 2, corresponding to a bilinear maps, and we had some pairing e : G1×G2 →
G′ = G1,2.

5.1 First attempt using Multilinear Maps for Obfuscation

So suppose we have a matrix branching program, {Aib}i∈[l],b∈{0,1}, where we assume
that this has been re-randomized and inserted with dummy matrices to hide infor-
mation about ind. Now for each column, we associate column i with the group Gi

defined as above, and for this group, suppose we choose some generator gi. Now, we

3

replace the existing matrices with matrix exponentiation. Concretely, for column i,
we have matrices Ai0 and Ai1, then we replace then with gAi0 and gAi1 , where

gAs =

gA11
S gA12

s . . . gA1n
S

gA21
S gA22

s . . . gA2n
S

...
... . . .

...

gAn1
S gAn2

s . . . gAnn
S

 .
Now, the idea is that the pairing operation allows us to compute g

s·
∏

j Ajxinp(j)
·t

[l] . Then

we can test whether s ·
∏

j Ajxinp(j) · t = 0 or not by seeing whether the result is the
identity 1 ∈ G[l].

Then for the attacks mentioned above, it seems that for attack (1), we can still test if
Ai0 = Ai1, and we can still (2) perform mixed-input attacks. But actually, it turns out
that we can do some more sophisticated things. For attack (1), consider computing

g
αjbR

−1
j−1AjbRj

j ,

i.e. we introduce this random scalar αjb. It turns out that this prevents (1), because
now the top and bottom get different output αjb, so we can’t just cmpare the matrices
in the exponent to tell them apart. However, multiplying by a scalar doesn’t change
whether the iterated product is 0.

To block (2), there are some different approaches. One idea is to use more sophisti-
cated index sets for the matrices. Rather than doing

g
Âjb

j → g
Âjb

Sjb
,

so we change j into a more “complex” index set Sjb. The point is that these sets pre-
vent mixing input. A second idea is to take the matrices Ajb, and prior to performing
the rerandomization, you turn them into a “Block Diagonal” of the form[

Ajb 0
0 Bjb

]
.

Then the matrix product is the product of the individual blocks, and we can use the
B to “enforce consistency.”

Theorem 2 If the multilinear map is ”ideal,” meaning the only allowed operations
are the allowed operations by the multilinear map, then one can instantiate the system
so that the scheme is secure in the iO sense.

Actually, we get VBB security, which would imply that ideal multilinear maps don’t
exist.

4

6 Can we build Multilinear maps?

For the rest of this lecture, we will consider this long-open problem. We recall that
actually elliptic curves give a way to construct bilinear maps (l = 2). It turns out that
there is no obvious generalization. What we do have is what’s referred to as ”noisy”
multilinear maps, which are based on lattice ideas. The rough idea is that we start
from an FHE scheme. Note that we could encrypt all of the matrices Âib under the
public key, so

Enc(pk, Âib)⇒ Enc(pk, s ·
∏

Aj,xinp(j) · t),

i.e. if we can encrypt all of the individual matrices, we can compute the encryption
of the iterated product by using the fully homomorphic properties of the encryption
scheme. However, we can’t evaluate whether the product is 0 or not, since it is
encrypted. But, we can try to “break” it in a way to do zero testing, i.e. find out
if the product is 0. However, a problem is that it turns out that there are a bunch
of nontrivial attacks on these schemes. The current status is that we’ve figured out
how to handle the attacks, but it is pretty unsatisfactory right now; we have some
understanding on how to defend the scheme, but we don’t have any great security
proofs.

7 Another approach to Program Obfuscation

It turns out that FE⇒ iO. The idea is that we can give out an encryption Enc(pk, C),
where C is the program you want to evaluate. Then, we can give out the se-
cret keys skfi,b for the functions fi,b(C) = Enc(pk, C(b, ·)) for b = 0, 1 (so the
bit b is hardcoded into the circuit). What this allows you to do is to go from
Enc(pk, C) → Enc(pk, C(x)) by gradually modifying the string x. But now, at
the end, you can have the value under f in the clear.

This leads to a problem, which is how to construct the FE in the first place. One
solution is to use iO (note this is circular). The idea is that you can start with a PKE,
and to give out the secret key for a particular function, you would create the program
that decrypts the ciphertext and then applies the function to the plaintext and then
you would obfuscate the program and output that as your secret key. It turns out that
using an l-degree multilinear map, we can directly construct FE for “degree l com-
putations.” Then in this FE to IO transformation, it is basically enough to have FE
for PRGs in order to do this bootstrapping strategy to compile FE into an IO scheme.

So you can show that if you have a degree l multilinear map, and PRGs that are degree
l, you can get iO. The problem, of course, is that for PRGs, we have conjectured PRGs

5

of degree 5, but it is impossible with lower degree, so we can use 5-linear maps to
get iO. There is a very recent breakthrough work that showed that LWE + constant
depth PRGs+ pairings + LPN implies iO.

6

	Recap from Last Lecture
	Re-randomization
	Why is Re-Randomization Useful?
	One-time Many-time
	Multilinear Maps
	First attempt using Multilinear Maps for Obfuscation

	Can we build Multilinear maps?
	Another approach to Program Obfuscation

