
COS 533: Advanced Cryptography Princeton University
Lecture 18 (April 8th)
Lecturer: Mark Zhandry Scribe: Mona Ye

Notes for Lecture 18

We are going to explore a weaker notion of obfuscation than the black box definition
(which is proven to be impossible).

1 Indistinguishability Obfuscation (iO)

Security Definition

∀ programs P0, P1s.t.∀x, P0(x) = P1(x)
Obf(P0, 1

λ) ≈c Obf(P1, 1
λ)

where we require the two programs to be identical on all inputs because if we know
it defers on some input x, then we can trivially distinguish the two programs just by
running them on the input and seeing that they differ.

Question

What if the two programs are identical on majority of inputs and differ on a negligible
amount?

Answer

iO is not the strongest security definition. Informally there is a variant of iO definition
Differing inputs obfuscation (diO) which says

Obf(P0, 1
λ) ≈c Obf(P1, 1

λ)

∀P0, P1s.t. differing inputs are hard to find

Unfortunately diO is suspected to be impossible in general. The intuition is that one
could give out some program Q which knows differing input x, meaning

Q(P) runs P (x) and decides which program is given

if Q is sufficiently obfuscated, then we might hope that x is hidden, which means
P0, P1 will be two programs that you cannot find the differing input. However, one

1

can clearly distinguish any code for them by running Q. The point is that there
appears to be some sort of barrier which leads to the suspicion of diO’s non-existence.

One special case is when P0, P1 differ on poly many inputs, then iO implies diO for
P0, P1.

Question

What about the time that takes to run the programs, for example when will they
halt if at all?

Answer

There is some subtleties if we consider a Turing Machine. We want to consider the
runtime/space of the turing machine as part of its output, but most of the time we
are focusing on circuits and hence we will ignore these subtleties.

2 Why might iO be possible

Focusing on circuits.

if P = NP =⇒ iO for circuits exists trivially

Simply let
Obf(C) = minimal circuitĈ for C

this can be computed in poly-time if P = NP . This puts iO in another category than
other regular crypto schemes since it is more likely to exists if the complexity class
collapses. On the other hand this version of iO is uninteresting, since if P = NP we
do not have any other crypto schemes. Hence, we really want iO to exist in the world
where NP 6= P .

Another equivalent definition is similar to VBB but with a computationally un-
bounded simulator.

Definition 1
∀PPT A, ∃S, negl ε, s.t.

∀C, |Pr[A(Obf(C, 1λ)) = 1]− Pr[SC(1|C|, 1λ) = 1]| < ε(λ)

2

The point is that if the simulator is unbounded, then it can query the entire circuit
for itself and learn what the function is, making it easy to simulate the view of the
adversary.

For impossibility from last time, S can query C on all points and then learn α, β, γ.
This indicate that there is no obvious impossibilities for the existence of iO.

3 What Use is iO

It is unclear what the use of iO is in terms of software protection. Specifically, in order
to invoke the security definition of iO, we need to exhibit an equivalent program. If
all equivalent programs actually reveals the information we are trying to hide, then iO
does not give us anything. Nevertheless, we can show that iO is the ”best possible”
obfuscation.

Theorem 2 (Informal) if there exists some obfuscator Obf satisfying some security,
then iO should as well.

Let iO denote the actual algorithm that computes the obfuscation.

iO(C, 1λ) ≈c iO(Obf(C, 1λ), 1λ)

simply by definition. Note that on the RHS iO is post-processing of Obf and should
not reduce security. A slight caveat is that Obf(C, 1λ) and C might not have the
same size, therefore, we must pad C in some trivial way on the LHS to be as large as
Obf(C, 1λ) since iO requires same-sized circuit.

The challenging question then is then understanding what circuits can be VBB ob-
fuscated.

4 Application

Despite the fact that iO might seem useless since we need to come up with an equiv-
alent circuit, there is something interesting that we can do with iO.

Definition 3 public key encryption from OWF to iO.

sk = s ∈ {0, 1}n

3

pk = G(s) ∈ {0, 1}2n

Enc(pk,m) : Ppk,m(s′) =

{
m, if G(s′) = pk
0, else

Output iO(Ppk,m)

Dec(sk, c) : output C(sk)

Security(informal): hybrid experiment

• H0(pk = G(s)), c = iO(Ppk,m0)

• H1 : pk ← random, c = iO(Ppk,m0)

• H2 : pk ← random, c = iO(Ppk,m1)

• H3 : pk = G(s), c = iO(Ppk,m1)

Indistinguishability between H0, H1 is simply due to pseudorandomness(PRG secu-
rity). Indistinguishability between H1, H2 is due to the fact that if pk is random,
then with high probability that there is no s such that G(s) = pk. Therefore w.h.p,
Ppk,m0 is equivalent to Ppk,m1(both would output 0 everywhere). Then by iO, H1 and
H2 are indistinguishable.

5 Construction (cont. next time)

Definition 4 A matrix branching program consists of {Bi,b}i∈[l],b∈{0,1}, B ∈ Zw×wq ,
s ∈ Z1×w

q , t ∈ Zw×1q . We call l the length of the program and w the width of the
program. inp : [l]→ [n] where n is the number of input bits.

Eval(x) := s · Πl
i=1Bi,xinp(i)

· t ?
= 0

Note that for a constant w, we can evaluate a branching program in NC1(log depth).
Specifically, we can first do a local computation to select the Bi,b’s to multiply, and
then compute the multiplication of these matrices by doing a binary tree of multipli-
cation (recursively multiplying the right half and left half). Note that each matrix
multiplication is constant size since we assumed the width is constant. We now give
Barrington’s theorem which essentially states that the converse is true as well.

Theorem 5 (Barrington’s theorem) Any circuit can be computed by a branching pro-
gram of w = 5 and l = 4depth. Note that l is polynomial for NC1.

4

Sketch of proof:

Let
Bi,b ∈ {5× 5 permutation matrices }

for example,

(12345) ⇐⇒


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Construct BP where

ΠiBi,xinp(i)
=

{
Id, if circuit C(x) = 0
(12345), if C(x) = 1

s = (0, 1, 0, 0, 0) t = (1, 0, 0, 0, 0)T

s ·M · t is entry at (2, 1)

We now do a recursive construction. Suppose that the last gate of C is a NOT gate,
then we construct a BP ′ for C ′

BP ′(x) =

{
Id, if C ′(x) = 0(C(x) = 1)
(12345), if C ′(x) = 1(C(x) = 0)

(12345)−1 ·BP ′(x) =

{
Id, if C(x) = 0
(12345)−1, if C(x) = 1

We then use the fact that the permutation matrices of (12345) and (12345)−1 are
similar. This means that

(12345) = U · (12345)−1 · U−1

we can then compute
U · (12345)−1 ·BP ′(x) · U−1

this gives us the right thing in both cases. Namely, when C ′(x) is 0, the U and U−1

cancel out and gives the identity, and when C ′(x) = 0, the inverses gives us (12345).
Hence we only need to absorb U ·(12345)−1 and U−1 into the matrices of BP ′ and we
finished the construction.

Now suppose that we have an AND gate in the end, namely, C(x) = C0(x) ∧ C1(x),
we then recursively construct BP0 and BP1 that compute the corresponding C0 and
C1. By similarity transformations,

BP0 =

{
Id, if circuit C0(x) = 0
(12345), if C0(x) = 1

5

BP1 =

{
Id, if circuit C1(x) = 0
V, if C1(x) = 1

where V is some other 5-cycle. We now have

BP0 ·BP1 ·BP−10 ·BP−11

Now if either C0(x) or C1(x) is 0, then the product is the identity by definition. We
now just need to consider the case where C0(x) = C1(x) = 1, in this case the above
product is (12345)V (12345)−1V −1, which is in commutator notations

[(12345), V]

We want this to map to (12345). We can do this as long as [(12345), V] is similar to
(12345), meaning that the commutator is a 5-cycle. This only exists for w = 5 and
up due to solvability of the permutation groups.

6 Next Time

We will give a formula for iO:

• apply Barington

• plug BP into crypto tools which will allow for evaluating the program while
hiding everything else

• bootstrapping to move from NC1 to all circuits.

6

	Indistinguishability Obfuscation (iO)
	Why might iO be possible
	What Use is iO
	Application
	Construction (cont. next time)
	Next Time

