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Notes for Lecture 16

1 Review of Function Encryption

Functional encryption is like a regular encryption scheme, except that you can give
out secret keys for functions f , where the user has a secret key for function f only
learns f of the message m, rather than the message m itself. That is, you give slightly
functional secret keys, that don’t allow decrypting completely.

Last lecture, we gave a distinguishability-based definition which was a natural gen-
eralization of the definitions we’ve seen for Identity Based Encryption and other
primitives. In the homework, you showed that it’s actually unsatisfactory for some
applications.

But yet, the the better sort of simulation based notion isn’t feasible. We hinted at
how they work last lecture, and the homework will take you through this in a bit
more detail.

Because of the impossibility, in general, of achieving this ideal notion, the literature
is broken into two or three categories:

• Single secret key case (1 collision) with one-bit outputs. This circumvents the
impossibility of the simulation definition.

• Focus on indistinguishability definition (maybe for many keys). There is no
impossibility known for indistinguishability, but the definition is slightly lacking
for some cases.

• Focus on specific functionality. The impossibility is due to functions that eval-
uate specific crypto functionality, such as a PRF. Limiting the scope of possible
functions to more specific functions (like membership in a hyperplane, for ex-
ample) circumvents the impossibility of the simulation notion.

In this lecture, we’re mainly going to focus on the single secret key case, because it
turns out here that we can actually do something interesting. While it is possible
to get the stronger definition, for simplicity, we will focus on the indistinguishability
experiment from last lecture. We won’t use the stronger simulation based notion,
because defining it is a bit more complex.
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Starting next week, we will cover program obfuscation, and we’ll see that program
obfuscation actually lets us come back and solve the many-key setting.

In order to solve the single key case first, we will need to introduce and define a new
crypto tool called garbled circuits.

2 Garbled Circuits

The definition of garbled circuits predates functional encryption by quite a lot. They
were first discussed and defined in the 80s in a series of unpublished works, and
they were used for multi party computation (a topic that hasn’t been covered in this
course). We will see that they’re useful for functional encryption as well as in other
places throughout cryptography.

Definition 1. A Garbled Circuit consists of two algorithms, Garble, and Eval. Garble
takes in a circuit C : {0, 1}n → {0, 1}, and security parameter λ.(

Ĉ, {Lib}i∈[n],b∈{0,1}
)
← Garble

(
C, 1λ

)
Here, {Lib}i∈[n],b∈{0,1} are called the labels. There are two labels for every for every
input bit to the circuit, one label corresponding to whether that input bit is zero and
another corresponding to whether that input bit is one. Ĉ is called the garbled circuit.

Eval takes in the garbled circuit, an input x ∈ {0, 1}n, and a set of n labels {Lixi}i∈[n]
corresponding to the bits of the input x, and outputs a bit z ∈ {0, 1}.

z ← Eval
(
Ĉ, x, {Lixi}i∈[n]

)
Correctness: z = C(x). That is, you get the correct evaluation of the circuit.

Security: There exists an algorithm Sim that takes in an input to the circuit x ∈
{0, 1}n and a possible output z ∈ {0, 1}, as well as n, the size of the circuit |C|, and
security parameter λ. It then outputs a simulated garbled circuit and simulated label
set for x.

(Ĉ ′, {L′ixi}i∈[n])← Sim
(
x, z, 1n, 1|C|, 1λ

)
such that it is computationally indistinguishable from the output of Garble (after
filtering the labels for input x, and using output C(x)). That is,

Sim
(
x,C(x), 1n, 1|C|, 1λ

)
≈c

(
Ĉ, {Lixi}i∈[n]

)
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Intuitively what’s going on is that someone has a circuit, C, that they garble to
produce a garbled circuit Ĉ and a set of labels {Lib}i∈[n],b∈{0,1}. Then, if they want to
give someone else the ability to evaluate the circuit on some input x, they send the
garbled circuit and the set of labels corresponding to x.

The correctness requirement says that from the garbled circuit Ĉ and the set of labels
{Lixi}i∈[n] for an input x, you actually learn the correct evaluation of the circuit.

The security says that you learn nothing else. Sim only takes as input an input to the
circuit x, the supposed output C(x), and the parameters of the circuit n, |C|, and λ.
Yet somehow, even though it doesn’t know the circuit and only knows the outputs of
the circuit on the on that single particular input, it is somehow able to simulate the
view of the Eval procedure. It is somehow able to simulate the garbled circuit on half
of the labels.

Note that it certainly can’t simulate all of the labels, because if you had all the labels,
you could evaluate the circuit on any input, but Sim is only given the evaluation of
the circuit on a single input. But it can nevertheless simulate, the half of the labels
corresponding to the single input x that it was given.

The simulation that we require here is one that the output is computationally in-
distinguishable from the real distribution. That is, the actual distributions may be
technically different, but no computationally bounded adversary should be able to
tell the difference. This is denoted with a ≈c above.

Next, to give some intuition, we will go over one of the original applications of garbled
circuits.

3 Two Party Function Evaluation

This discussion of 2 party function evaluation won’t be complete because we won’t
cover something called oblivious transfer which is necessary for the protocol, but that
we haven’t really formally defined. Hopefully it still gives some intuition for why
garbled circuits are useful.

Setup:

• Alice gets a circuit C : {0, 1}n → {0, 1}.

• Bob gets an input x ∈ {0, 1}n.

Goal:

• Alice learns nothing.
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• Bob learns C(x), but nothing else.

This is achieved as follows:

1. First Alice garbles her circuit C to get a garbled circuit, Ĉ, which she sends to
Bob, and a set of labels {Lib}i∈[n],b∈{0,1}.

2. Alice then sends the labels, {Lixi}i∈[n], corresponding to Bob’s input x without
learning what x is. This uses a process called oblivious transfer, which takes
in a pair of labels (or in general any two values), L0 and L1, from Alice, and
a bit b from Bob. At the end of the oblivious transfer process, Bob learns Lb
and nothing else, while Alice learns nothing (in particular, she doesn’t find out
which label Bob has learned).

3. Finally, Bob uses the garbled circuit and the labels from the oblivious transfer
to evaluate the circuit on his input.

The notion of learning nothing is again formalized by a simulation condition. That
is, it requires that Bob’s entire view can be simulated just knowing C(x) and not
knowing anything else about the circuit other than its size. Therefore this implies
that Bob learns nothing about Alice’s circuit except C(x). At the same time, Alice
learns nothing because the oblivious transfer never gives her any information about
Bob’s input x.
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4 Building functional encryption from garbled cir-

cuits

We’re going to assume just a generic public key encryption scheme (Gen,Enc,Dec).
We are also going to assume an upper bound T on the description size of the functions
we would like to support in the functional encryption scheme (can think of T as a
bound of the circuit size).

Construct the functional encryption scheme as follows:

GenFE():

• Master public key mpk: A set of 2T public keys
{pkib}i∈[T ],b∈{0,1}

• Master secret key msk: The corresponding set of 2T secret keys
{skib}i∈[T ],b∈{0,1}

ExtractFE(msk, f):

• Write f as a bit string in {0, 1}T

• Use the bit string for f to select a subset of the secret keys
skf = {ski fi}i∈[T ]

EncFE(mpk,m):

• Let U(·, ·) be a universal circuit. That is, U(f,m) = f(m), where U gets a
bit string description of f , interprets it as a circuit (or some other model), and
evaluates it on m. Such universal circuits can be shown to exist, but we will
not cover them in this class and just assume them.

• Let Cm = U(·, m). That is, Cm is a circuit that takes as input a description of
a function and evaluates that function on m.

• Compute a garbled version of Cm(
Ĉm, {Lib}

)
← Garble

(
Cm, 1λ

)
• Output the garbled circuit along with the encrypted labels(

Ĉm, {Enc (pkib, Lib)}ib
)

DecFE
(
skf , c =

(
Ĉ, {di b}

))
:
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• Use the T to decrypt the relevant part of the ciphertext corresponding to the
bit description of the function f to get the corresponding T labels. Use that to
evaluate the garbled circuit.

Eval
(
Ĉ, f, {Dec (skfi , di fi)}

)
• By the correctness of the garbled circuit procedure, this will output
Cm(f) = f(m) as desired.

Security Intuition

1. If you only know skf and you learn Li fi and other labels remain hidden, you can
replace the other labels with “junk” (when generating the challenge ciphertext)
as the adversary doesn’t have the secret key for those and so cannot tell the
difference.

2. Simulate the remaining labels just given f(m) and the size of the function
|f | = T .

This actually gives the stronger simulation security notion that we’ve alluded to.
That’s because all you need in order to simulate the ciphertext is the output of the
secret keys, without needing to know the secret message.

5 Constructing a Garbled Circuit

Suppose we start with some circuit made of AND and OR gates

Assign to each wire w two labels, Lw,0 and Lw,1.

• The labels on the input wires are going to be the labels outputted by Garble for
the input bits. These are outputted in the clear.

• The internal wires will be used to construct Ĉ, but not outputted in the clear.
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Invariant: As we run Eval
(
Ĉ, x, {Li xi}

)
, imagine running C(x). If wire w has

value b, Eval learns Lw,b, but not Lw,1−b.

In other words, as Eval goes gate by gate through the circuit (without knowing what
the circuit actually is, of course, besides its topology), for every wire in the circuit,
it will learn the label corresponding to the the bit that that wire takes in the correct
evaluation, but not the bit itself.

To do this let’s imagine that we have a gate and let’s say without loss of generality
that it’s an AND gate. Call the two input wires w and v, and call the output wire y.
Assign two labels for each of those wires:

We want it to be possible to learn the appropriate label of the output wire, but it
should not be possible to learn anything else about the other label for that wire,
which should remain completely hidden.

More specifically, if the values of the two input wires are bits a and b, respectively,
then by the invariant, we have both Lw, a and Lv, b. By using those two labels, we
should only learn the corresponding Ly, c where c = a ∧ b.

Lw, 0, Lv, 0 −→ Ly, 0

Lw, 0, Lv, 1 −→ Ly, 0

Lw, 1, Lv, 0 −→ Ly, 0

Lw, 1, Lv, 1 −→ Ly, 1

To do this we encrypt Ly, 0 in such a way that knowing any of the first three pairs of
labels, allows you to learn Ly, 0, whereas knowing the last pair doesn’t allow you to
learn anything about Ly, 0.

A natural way to do this is to interpret Lw, a and Lv, b as secret keys for a secret key
encryption, and for every pair of bits (a, b), take the label Ly, a∧b that would be the
result of the gate on those two inputs, and encrypt it first under Lv, b, and then under
Lw, a.

ca, b = Enc (Lw, a, Enc (Lv, b, Lv, a∧b)) ∀ a, b ∈ {0, 1}
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If you know only one label for each input wire, then there’s only one of these dou-
ble encrypted values that you are able to decrypt. Therefore you only learn the
appropriate output label.

In order to make sure that you don’t know which of the ca, b’s you were able to decrypt
(and therefore learn a and b), we have to shuffle the four ca, b ciphertexts randomly.
You therefore need to try decrypting all four ciphertexts, which means that we need
a signal indicating when decryption succeeds.

We want the encryption to abort if you use the wrong keys, but at the same time to
not accidentally reveal everything else. For example, let’s assume that all ciphertexts
are “decryptable” by any secret key, but that when the secret key is incorrect it
decrypts to nonsense. We can do this, for example by padding a preset number of 0’s
to the encrypted values, so that only a correct encryption will reproduce those zeros.

While we have described this for a 2-input AND gate, we can actually do this for any
gate, and just as easily for gates on more than 2-inputs. So this can be done for each
of the gates in the circuit.

Finally, for the output wire, include both Lout,0 and Lout,1 in plaintext in the garbled
circuit. These labels are never used to encrypt anything (only the lower wires’ labels
are used to encrypt), so it doesn’t break the security of any of the encryptions. When
evaluating the garbled circuit, just compare the final label you get out of the last gate
with these two labels to reveal the output bit of the circuit.

The one remaining issue is that the Eval procedure must know the circuit topology,
as it evaluates each gate of the circuit one by one. That is, it reveals which gates are
present and where, and which gates connect to which other, but not what type of
gate each is (AND, OR, NOT, etc).

Of course the circuit topology is more information than what we want to give our
simulator. We want our simulator to receive just the circuit size but know nothing at
all about the topology. The way to do this, of course, is to compile the scheme into
one that hides the topology using Universal Circuits. That is, instead of garbling C,
we garble

Garble (U(C, ·))

which is the universal circuit applied to a bit encoding of C. The topology of the
circuit being garbled is therefore fixed, and is just the topology of the universal circuit.
The circuit itself only affects the instantiation of the individual gates.

6 Known Results in Functional Encryption

• PKE =⇒ 1-ciphertext FE of bounded size functions (what we did here)
|ciphertexts| ≥ |function|
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This can sometimes be undesirable, because if, say, f is a spam filter, the
ciphertext will grow with the size of the spam filter rather than the length of
the message.

• LWE =⇒ 1-ciphertext FE with small ciphertexts. That is, the size of the
ciphertexts is independent of the size of the functions (called “succinct”).

• Specific cases (for example, pairings =⇒ subspace membership, even for many
functions/secret keys), but they cannot do arbitrary computations.

• Obfuscation ⇐⇒ many-time (many secret keys for several functions) FE for
arbitrary functions. [These notions are essentially equivalent.]
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