COS 533: Advanced Cryptography Princeton University
Lecture 15 (March 30)
Lecturer: Mark Zhandry Scribe: Kiril Bangachev

Notes for Lecture 15

1 Last Time

Last time we discussed fully homomorphic encryption (FHE). Today, we will continue
the topic by showing:

- The security of the FHE protocol discussed in Lecture 14.

- A bootstrapping result which boosts an FHE handling a limited number of opera-
tions to an FHE handling an unlimited number of operations. We need this boost as
the scheme discussed produces noise of size poly(n)” after computation of depth T,
which limits the feasible depth of computation.

2 On FHE

Recall the scheme from last time for encrypting a binary message z :
Gen() :sk = (_81> where s <— Zpt.
pk = P where P ¢ Z{DX™ for m = nllog(q)]
sTP+ el a ’

e is short discrete Gaussian noise.

Enc(pk,z) : C' =pk- R+ x - G, where
R <> {0, 1},

1 2 4 8
G = 1 2 4 8. Ezgnxnflogq]

Dec(sk, C') : Compute sk’ C' = z - sk’ - G — . By the structure
of G, there exists a component where sk’ - G is large,
but e is small. Thus, a simple rounding enables

differentiating between x = 0 and =z = 1.

1

2.1 Security

We already proved the fully homomorphic (additive and multiplicative) property of
the scheme. Now, we will prove CPA security via a hybrid argument. Consider:

e H) : Encrypt m = 0 according to the protocol.

e H, : Encrypt m = 0 according to the protocol, with the only difference that we

switch to pk S Zy™™.
e H, : Encrypt m = 1 according to the protocol, with the only difference that we

switch to pk S Zy™.
e H; : Encrypt m = 1 according to the protocol.

Suppose, for the sake of contradiction, that there exists a PPT adversary A which
breaks CPA security. According to the CPA definition (see Lecture 1), as the message
space is given by {0, 1}, it must be the case that:

|Pr[l «— A(Hy)|] — Pr[l «— A(H3)]| > e(n)
for some non-negligible €. By the usual triangle inequality, this means that:

|Pr[l «— A(H,)] — Pr[l «— A(Hy)]|+

|Pr(l «— A(H,)] — Pr[l +— A(Hy)]|+

|Pr[l «— A(Hy)| — Pr[l «— A(Hj3)]| > €(N),
so at least one of the three expression should be non-negligible. However:
e |Pr[l +— A(Hy)| — Pr[l «+— A(Hy)]| and |Pr[l «+— A(Hy)] — Pr[l +— A(Hj3)]|
are negligible by LWE security (see Lecture 9).
o |Pr(l «— A(H,;)] — Pr[l +— A(H,)]| is also negligible. The intuition behind this
fact is that when m is large, P - R is statistically indistinguishable from a uniformly
random matrix. This, however, implies that P- R+ 0 x G and P- R+ 1 x GG are both
statistically indistinguishable from a random matrix and, therefore, from each other.

This argument is made precise through the following lemma appearing in the original
paper for FHE from LWE [BV11, p.9]:

Theorem 2.1 (Matrix-Vector Leftover Hash Lemma): Let k € Nyn € N g € N, and
m > nlogq+ 2k. Let A S Ly™",x S {0,1}™y S {0,1}". Then,

A((A AT, (Ay)) <27

where A is the statistical difference between the distributions.!

IStatistical difference denotes the advantage any adversary (including computationally un-
bounded ones) can make in distinguishing the distributions. Up to a factor of 2, it is true that
A(Dg,Dy) =Y, |Pr(z|Do] — Prlxz|D,]| for discrete distributions.

2

One can extend this result to r «— {0, 1}™™ as in our set-up.

As all three differences are negligible, this leads to a contradiction. The protocol is
CPA secure as desired.

2.2 Bootstrapping

We move on to bootstrapping. We will ignore the particulars of the scheme and
discuss a very general bootstrapping result. The goal is roughly to take an FHE that
can only handle limited computation and turn into into an FHE that can handle
arbitrary computation. For this, two assumptions are necessary.

2.2.1 Assumptions

Assumption 1, Circular Security: The original FHE remains secure even if given
Enc(pk,sk) (see [BV11, Definition 3.8] for a precise definition). Circular security
arises as a natural requirement in the bootstrapping scheme, but is also of indepen-
dent interest related to other applications.

We will assume circular security for the FHE protocol. This property, however, is only
conjectured. While it is known how to build schemes satisfying circular security from
from LWE (see for example [App+09]), this is an open problem in the case of FHE
schemes. Still, evidence points that existing FHE schemes should be circularly secure.

Assumption 2: The scheme can homomorphically evaluate its own decryption func-
tion. To make this statement precise, recall that the decryption function can be
written as a (boolean) circuit. We require that our scheme supports evaluations at
least as complex as the scheme’s decryption.

We can prove this assumption for our scheme. In our scheme on page 1, decryption
takes the form of taking an inner product followed by rounding. As the scheme is
limited by depth? of computation, we need to show that it supports enough depth of
computation to perform these two operations:

- Rounding can be done easily with log(n)—depth circuits as one only needs to
ensure that higher-order bits (which are O(log(n)) in number) are non-zero.

- Taking a modular inner product can also be done with a computation of
depth log(n). Recall the usual formula: (r,v) = >" rv; (mod g). We can
compute this via a shallow circuit in the following way. First, we ignore the

2For other schemes, the fundamental limiting factor and, therefore, benchmark for evaluating its
own decryption might be different from depth.

modular arithmetic and perform the following circuit of depth log(n), in which
we multiply at the bottom level and add on each of the others (as on the figure
below). Then, we can also easily reduce the result modulo ¢ with another
log(n)—depth circuit.

log(n) depth G .
* (L e

v

L]

1 Tz V2 13 VU3 T, Uy Th-1 Vn-1 m Un

By setting parameter large enough, our FHE scheme can handle depth logn.
Note: For all known FHE schemes based on lattices, Assumption 2 holds.

2.3 The Bootstrapping Procedure

Having established the two assumptions of our FHE scheme, we will ignore most of
its details and present a generic bootstrapping technique.

Suppose ¢; = Enc(pk, my), c2 = Enc(pk, ms). We want to compute
¢ = Enc(pk, m; & ms),

where @ is an arbitrary binary operation that we will regard to be XOR for concrete-
ness. To compute ¢, we first define the following function:

D, ,(sk) := Dec(sk, c¢1) & Dec(sk, c3).

Note that anyone can compute® D,, ., as it requires knowledge of Dec, ¢; and cy. Of

3Here, we actually need a slightly stronger assumption than Assumption 2. We want to be
able two evaluate two instances of decryption rather than one. While this might be of practical
importance, the asymptotic behaviour does not change and our scheme still satisfies this assumption.

4

course, one cannot evaluate it without knowledge of sk. Having access to u* and D, .,
however, we can homomorphically evaluate D, .,(u). This will give Enc(pk, D, ., (u))
by the definition of FHE. On the other hand,

Enc(pk, D, ., (sk)) = Enc(pk, Dec(sk, c1) @ Dec(sk, ¢3)) =
= Enc(pk, Dec(sk, ¢1)) @ Enc(pk, Dec(sk, ¢2)) = Enc(m; & ms) = ¢,

as desired.

Notes:

- The result ¢ might be very noisy. If applying Dec twice in the homomorphic
evaluation of D, .,(u) requires the maximum depth that the FHE scheme can
handle, no further homomorphic computation with ¢ might be possible. This,
however, is not a real limitation as the bootstrapping procedure only applies
homomorphic evaluations on u. Even if ¢; and ¢, are already very noisy, as long
as u is not, the bootstrapping technique can be applied.

- The bootstrapping technique can similarly be applied to "refresh” a ciphertext
¢ = Enc(pk,m) if the computation has reached its maximum depth. Defin-
ing D.(x) := Dec(x,c), one can homomorphically evaluate D.(u) to obtain
Enc(pk, Dec(sk, ¢)) = Enc(pk, m). This results in a new decryption of m, which
will only be at depth equal to the depth of the decryption function. In other
words, one can use this technique to occasionally construct new instances of the
ciphertext at a lower fixed depth equal to depth(Dec).

- The above "refreshing” technique leads to fast implementations of FHE. They
work by performing FHE operations according to the original protocol and ”re-
freshing” ciphertext instances only when necessary. Other optimizations have
also been developed. Currently, the overhead (due to bootstrapping) has been
reduced to an amortized ~ 10° steps per homomorphic operation. While this is
far from FHE computation on real complex data, it still allows up to 1000 FHE
operations per second which enables some non-trivial real-world computation.

-Question: Doesn’t this procedure require that the decryption function only per-
forms operations such as addition and multiplication?

A: Yes. However, additional and multiplication are enough for all bitwise oper-
ations as they generate AND,OR, and NOT :

r AND y=xxy
NOTz=1—=x
rORy=x+y—2xxy

4As access to u = Enc(pk, sk) is crucial to the scheme, we needed assumption 1 which states that
knowing v does not break security.

Having finished the details of the FHE protocol, we will move on to some generaliza-
tions of concepts previously introduced in the class.

3 Attribute-Based Encryption

First, we will generalize IBE - identity based encryption (see Lecture 11). Recall that
in IBE we wanted to encrypt to any single user. Sometimes in practice, however, this
is not sufficient. For example, we may want to encrypt to all students or all students
in the CS department. In other words, there can be a more general access structure
in which you don’t encrypt to a single user, but instead to all users who satisfy a
certain property. This idea gives rise to attribute-based encryption.

Attribute-Based Encryption Syntax:

(mpk, msk) +—Gen(1%)
ks <— Extract(mpk, attr)
¢ «—Enc(mpk, P,m)

m' <—Dec(skaztr, €),
where m' = m if P(attr) =1,
and m is hidden if P(attr) = 0.

Above, mpk and msk are the master public key and master secret key; attr corre-
sponds to an attribute that characterizes a group of users; the policy P is a function
which accepts only the group of users characterized by attr.

The decryption condition states that only users who hold the secret key for an at-
tribute attr accepted by policy P can decrypt a ciphertext encrypted for this policy.

We define security in a similar way to IBE security. We run an experiment EXP; be-
tween an adversary A and a challenger C'h. In this experiment, the challenger C'h has
a hidden bit b. Then, the challenger generates a public key - secret key pair (mpk, msk)
and sends mpk to the adversary A. Then, A queries as many times as she wishes an
attribute attr and receives the secret key skuu.. At some point of time, A sends a
policy P* and two messages my and m; and the challenger encrypts m; according to
P*. After querying for more secret keys sk, the adversary A makes a guess b’ for
b. A wins if b = /. Of course, we require that P*(attr) = 0 for all attributes attr
queried by A in the experiment as otherwise the task is trivial. Graphically:

(mpk, msk) < —Gen(1%)

A) mpk Ch
(attr -
) Skgerr < —Extract(msk, attr)
P*,my,my

\ 4

A

Enc(mpk, P*,my)

(attr R
0 5kgeer < —Extract(msk, attr)

bl

For security, we require that for each PPT adversary A :

‘Pr[l «— A(EXP,)] — Pr[l «+— A(EXP)]| < negl())

Note: In the special case when the policies accept only a single user id, i.e. are of
the form P(x) = (x == id), this is the definition of IBE.

Example: Consider the example of two users who can collude. For example u; is a
student in the math department and us is a professor in CS. Then, neither user is
allowed for a policy P := (student) A (C'S department). For security, we require that
even if u; and us collude they cannot satisfy the policy even though w; satisfies the
first condition and uy the second.

In practice, we often encode properties of users by attribute lists. For instance, to
formalize the above example in the language of attributes, we can encode:

Encoding Properties in an Attribute List
User Student Professor Math CS
Us 0 1 0 1

Then, the example policy will ask for the and operation between the bits for student

and cs, i.e. P = (Student) AND (CS).

Notes:

4

- Many of the original schemes worked in this way by computing the "and” of a
certain subset of bits. Today, we also have schemes that can handle attributes
of arbitrary length and can perform arbitrary circuits (beyond "and”) on them.

- Question: What attribute lengths are supported - log(\) or poly(A)?

A: We usually think of attributes having a fixed poly(\) length. We do need
poly(A) length so that we are able to support IBE as a special case (see Lecture
12). It is also possible to define attributes of variable length, but this requires
policies to be defined as Turing machines rather than circuits.

- Question: Do we need a poly-sized message space?
A: No. We just require attributes to be of polynomial length®.

Functional Encryption

A closely related concept to attribute-based encryption is functional encryption. We
motivate it through the following example.

Ezample: As a client of a mail server, I have a key pair (pk, sk) with which T decrypt
incoming mail. The server receives a message ¢ = Enc(pk, m). One desirable property
of the server is to apply a spam-filter SF' and decide if the incoming mail is spam
and, if so, discard it before sending it to me. How can the mail server run SF without
learning the content?

Idea based on FHE: One idea is to resolve this by using FHE encryption. If
we homomorphically apply SF to ¢, the server gets SF(c) = Enc(pk, SF(m)).
This, however, doesn’t help the mail server as the result of the spam filter is
hidden under the encryption. Thus, the mail server cannot learn SF(m) (un-
less we give the server sk, but we do not necessarily trust the server to view the
contents of our messages). Thus, the only thing the mail server can do is send
us Enc(pk, SF(m)). However,it cannot discard spam before forwarding it to us.

We get the following intuition from this example. The problem of the FHE approach
is that we can only give an encrypted version of SF'(m). However, we want the server
to learn SF(m) but "nothing else.”

5This means that the attribute space can be of size 2PoY(A)

To formalize this requirement, we first need to introduce the syntax of functional
encryption:

(mpk, msk) <—Gen(1*)
sk «—Extract(msk, f), where f is a function.
¢ «—Enc(mpk, m)
x <—Dec(sky, c).

Above, f is the function to be applied - for instance SF' in the mail server.
The correctness requirement is given by f(m) = Dec(sks, Enc(mpk, m)) with probabil-
ity 1. For security, we (informally) require that sk; reveals nothing about m but f(m).

We relate this syntax to the mail server instance as follows. We give the server skgp.
By decrypting Dec(skgr, ¢), the spam filter learns SF'(m) but nothing more about the
message. The spam filter can now discard spam messages m for which SF'(m) = 1.

-Question: Are collusions allowed?

A: In general, we want collusion-resistance for the same reasons as in IBE and
traitor-tracing. If we issue several different secret keys, we don’t want different
serves to be able to collude and get access to encrypted information.

We will discuss two approaches to security. The first resembles the definition of
attribute-based encryption security:

Definition 4.1 (Security of Functional Encryption): We describe the experiment
through a picture:

(mpk, msk) < —Gen(1%)

A mpk Ch
= :
sky < —Extract(msk,)
Mg, My

v

Enc(mpk, my)

f
< sk < —Extract(msk, f)

bl

v

Here, the requirement on queries is that f(mg) = f(m;) for all queried functions f as
otherwise A’s task is trivial. Again, if we denote this experiment by EXP;, we want

CPA-style security. That is, for all PPT adversaries A,
Prl «— A(EXPy)] — Pr[l «— A(EXP,)]| < negl(}\).

Unfortunately this definition is not ideal. Suppose that F'is an OWF and A gets skg.
Now, suppose that one encrypts ¢ <— Enc(mpk,z) for a random x. The adversary
learns F'(z) by the definition of functional encryption. Ideally, A should learn "noth-
ing else,” including z. Unfortunately, the above security definition doesn’t justify this.
It is possible that the functional encryption is secure with respect to Definition 4.1
and A is still able to recover x.

Thus, one can attempt a different definition which formalizes ”learns nothing else”
through a simulator as in Zero-Knowledge (see Lecture 9)°. Unfortunately, it turns
out that it is impossible to obtain a functional encryption scheme satisfying this notion
of security. We only provide intuition for this. Suppose that one wants to encrypt a
PRG F : {0,1}° — {0,1}°**(). We want A to learn the output F(m) = Dec(skp, c)
but nothing else. Thus, a simulator that outputs the result of F' should look random
(as a PPT adversary A cannot distinguish a PRG output from random). However, if
the ciphertext ¢ is much smaller than the PRG output in size, |¢| << § + s(J), then
Dec(skp, ¢) will be a distribution over only 2/ numbers and, thus, will have an entropy
much lower than that of the uniformly random distribution over {0,1}%**(). Thus,
the output of the PRG Dec(skg, ¢) could actually be computationally distinguishable
from a random string, which is undesirable.

As a consequence, we usually use the indistinguishability definition (Definition 4.1).
However, we need to be careful as the notion of security it guarantees is limited.

References

[App+09] Benny Applebaum et al. “Fast Cryptographic Primitives and Circular-
Secure Encryption Based on Hard Learning Problems”. In: vol. 5677.
Aug. 2009, pp. 595-618. 1SBN: 978-3-642-03355-1. DOT: 10.1007/978-3~
642-03356-8_35.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. “Functional Encryption: Def-
initions and Challenges”. In: May 2011, pp. 253-273. 1SBN: 978-3-642-
19570-9. por: 10.1007/978-3-642-19571-6_16.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient Fully Homomor-
phic Encryption from (Standard) LWE”. In: vol. 2011. Oct. 2011, pp. 97—
106. por: 10.1109/F0CS.2011.12.

6See, for example, Definition 4 in [BSW11] for such a definition for functional encryption

10

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1109/FOCS.2011.12

	Last Time
	On FHE
	Security
	Bootstrapping
	Assumptions

	The Bootstrapping Procedure

	Attribute-Based Encryption
	Functional Encryption

