
COS 533: Advanced Cryptography Princeton University
Lecture 14 (Mar 25, 2021)
Lecturer: Mark Zhandry Scribe: Ezra Edelman

Notes for Lecture 14

1 Introduction

In this lecture we will discuss fully homomorphic encryption. Consider the following
motivating example where the client has some secret key sk, and the server and client
share some public key pk,

Enc(pk,D)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−B

sk Client Server

↓ Enc(pk, f(D))
C−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f(D)

A client has some large database D that they store on a server. Since the client
doesn’t want the server to know whats on the database, they encrypt it. Later, the
client wishes to learn some function of the database (ex: some statistical analysis),
so they want to find f(D) for some function f .

One possible solution is for the server to send back the encrypted database, and then
the client can decrypt it and evaluate f(D). But, this is computationally intensive
and the client would have to store the database (which they might not have the
capacity to do). So, the client would like the server to do the calculation required to
evaluate f , while keeping the database encrypted.

We want an encryption scheme that allows server to compute f(D) without ever
learning anything about it or D.

2 Fully Homomorphic Encryption

In a fully homomorphic encryption scheme there are some addition and multiplication
operations on the cipher text that correspond to addition and multiplication of the
plaintext.1

1Another way to think about this is that the decryption function is sort of a homomorphism
between the plaintext ring and ciphertext ring. This is where the name comes from.

1



2.1 Key features

• CPA security2

• Additively homomorphic:

Enc(pk, x0)⊕ Enc(pk, x1)
3 looks like Enc(pk, x0 + x1)

• Multiplicativly homomorphic:

Enc(pk, x0)⊗ Enc(pk, x1) looks like Enc(pk, x0 × x1)

Questions

Q. Are we assuming that the xis are elements of some field, or a ring (or some
other structure)?

A. Usually we imagine some ring. In the scheme we’ll see, the xis will be binary
(so operations will end being over the field of two elements).

Q. What do you mean ”look like”. Do you mean equal, or can be computed from?

A. For certain schemes, the additive and multiplicative operations don’t result in
the same distribution as the original encryption scheme. We’re going to be using
a scheme based off of learning with errors (LWE), and the noise term from LWE
will be increased every time you do the operations. The point is that decryption
still works, and you should be able to apply more and more operations.

Q. Do we expect encryption to be deterministic, with no random component.

A. No, this is one reason what we are doing is imprecise. If we have CPA security,
we need randomness. The FHE can in principle be deterministic, but we still
won’t get equality4 since the output of Enc is a distribution. The right way
to define FHE is to define it in terms of the decryption function, since (we
generally assume) that decryption is deterministic. Then, we can use an equality
condition for the homomorphic properties.

2Can’t get CCA security.
3⊕ does not necessarily refer to exclusive or.
4Specifically, between Enc(pk, x0)⊕ Enc(pk, x1) and Enc(pk, x0 + x1)

2



2.2 Trivial “Solution”

c0 ⊕ c1 = (⊕, c0, c1)
c0 ⊗ c1 = (⊗, c0, c1)

Dec(◦, c0, c1) = Dec(c0) ◦Dec(c1)

This is uninteresting since the client has to apply f themselves. So we have to put
some restrictions on the format of the output, but don’t need the output to look
exactly like the encryption scheme. For the scheme we will construct, it will be
obvious that we’re doing something non trivial.

2.3 El Gamal: Multiplicative Homomorphism

Using the compent-wise × operation,

c0 = gr0 , hr0 ×m0

c1 = gr1 , hr1 ×m1

c = c0 × c1 = gr0+r1 , hr0+r1 × (m0 ×m1)

So c is Enc(pk,m0 ×m1) using the randomness r0 × r1.

2.4 Lattice-based scheme: Additive Homomorphism

Adding the cipher text components together yields an encryption of the sum of the
cipher texts, but the error rate is the sum of the error rates of the two cipher texts.
The decryption will still work as long as error rate doesn’t get too large.

Going back to the 70s, we had these additive or multiplicative homomorphic encryp-
tion schemes, but it wasn’t until around a decade ago that it was discovered how to
achieve additive and multiplicative homomorphism simultaneously.

3 Attempt 0

Won’t be secure, but its a start.

sk ∈ Zm
q (prime q, integer m)

Enc(m) : matrix C ∈ Zm×m
q s.t. C · sk = m · sk

3



In other words, sk is an eigenvector of C with eigenvalue m. Lets just check that this
is homomorphic, and ignore security and decryption for now.

Suppose that C0 encrypts m0, and that C1 encrypts m1

(C0 + C1) · sk =(m0 + m1) · sk
=⇒ C0 + C1 encrypts m0 + m1

(C0 · C1) · sk =C0 · (m1 · sk) = (m0 ·m1) · sk
=⇒ C0 · C1 encrypts m0 ·m1

This is insecure: use eigendecomposition to recover all eigenvalues and eigenvectors.
One of the recovered eigenvectors will be sk, one of the eigenvalues will be the message.
So, if you see enough ciphertexts, you can find the eigenvalue that appears for all of
them, and that is sk.

4 Idea 1

We will try to add noise to prevent eigendecomposition.

We take motivation from LWE. LWE takes a task that is trivial with linear algebra
(Gaussian elimination) then adds noise to make it secure while still preserving cor-
rectness. So we are going to try to “port” that idea to here, and add noise to Idea 0
while maintaining correctness but prevents linear algebra (eigendecomposition) from
defeating the scheme.

sk ∈ Zm
q (prime q, integer m)

Enc(m) : C ∈ Zm×m
q s.t. C · sk = m · sk + e

What we want is for e is a short error vector.

Now, eigendecomposition won’t necessarily find sk or m.

Suppose that C0 encrypts m0, and that C1 encrypts m1

4.1 Addition

(C0 + C1) · sk = (m0 · sk + e0) + (m1 · sk + e1) = (m0 + m1) · sk + (e0 + e1)

Notice that e0 + e1 is still a short error vector, but slightly larger than e0 or e1.

4



Questions

Q. Would we have a problem if we compose this many times resulting in the error
growing exponential in terms number of operations?

A. For addition notice that the size of the error doubles each time we add. So the
size of the error is exponential in operation depth. What we can do is set q
to be exponentially large a priori, and then we can do computations up to a
certain depth logarithmic in q. This limitation is going to be present in any
scheme we can prove secure from LWE.

Q. Does this mean that we are only able to do computations in the class AC0?

A. No. Recall that with an exponential modulus, the bit length is still polynomial.
So, for any computation of depth t, we can choose q such that it is larger than
2t. But, this does mean that the client will have to do more work, so the only
advantage is for shallow computation since the client pays for the depth. Next
time we will talk about a “bootstrapping” that can be done to further increase
the depth of the computation done by the server, but it comes at the cost of a
heuristic component that we don’t know how to prove.

4.2 Multiplication

(C0 · C1) · sk =C0(m1 · sk + e1)

=C0(m1 · sk) + C0(e1)

=m0 ·m1 + sk + (m1 · e0 + C0 · e1)

If m1 · e0 + C0 · e1 remains small, then C0 · C1 encrypts m0 ·m1. So, we need

1. m1 to be small

This is the easier case. We will always assume messages are binary. Notice that
multiplication of binary messages will result in binary. Addition (which is mod
q) does not preserve binary, because 1 + 1 = 2.[citation needed ] We need to make
sure that addition also keeps it in binary, to do this we will use a multiplication
to turn addition into an xor.

m0 ⊕m1 = m0 + m1 − 2(m0 ·m1)

So the size of m1 isn’t much of an issue. So the bigger issue is the size of C0.

2. C0 to be small

Our solution to this will use a gadget matrix.

5



5 Idea 2

Gadget Matrix

G =


1 2 4 8 . . . d2log2 qe

1 2 4 8 . . . d2log2 qe
1 2 . . .

. . .


G ∈ Zm×(m log2 q)

q

v ∈ Zm
q

bit decomp6−−−−−−−→ v′ ∈ Zz log q
q

v′ := G−1(v)

G ·G−1(v) = v

This can also be extended to matrices

M ∈ Zm×n
q

G−1(M)−−−−−→M ′ ∈ Zm log q×n
q

G ·G−1(M) = M

G takes in a matrix, does bit decomposition component wise, and assembles each
component into a vector, then these vectors in a block matrix. Let m = O(n log q),
then

• Gen()→ sk,pk

sk =

(
s

−1

)
s← Zn−1

q is uniform

pk =

(
P

sTp + eT

)
P ← Z(n−1)×m

q is uniform, e is short noise

Questions

• Enc(pk,m) (recall) m is binary but can be interpreted as base q.

C = pk ·R + mG

R← {0, 1}m×m

Take pk, multiply it (on the right) by a random (0, 1)−matrix, then add the
message m times the gadget matrix.

6For each entry of v, interpret that entry as an integer between 0 and q − 1, and then each bit
will be an entry in v′.

6



• Dec(sk, C)→ skt · C

skT · C = skT · pkR + m · skT ·G
skT · pk = sT · P − (sT · P + eT ) = −eT

skT · C = m · skT ·G− eT ·R

Since skT ·G looks like
(
skT 2skT 4skT . . .

)
. There will be some component

where skTG is big but eT ·R is small, so by checking if this component is close
to zero we find if m is 0.

5.1 Addition

C0 ⊕ C1 = skT (C0 + C1) = skTC0 + skTC1 = skT · pk(R0 + R1) + (m0 + m1)sk
T ·G

Notice that R0 + R1, while not (0, 1), is still small, so everything is fine.

5.2 Multiplication

We can’t just do C0 · C1 since the dimensions don’t match, and if C1 is large, the
error will be large. Instead,

C0 ⊗ C1 = C0 ·G−1(C1)

First, this fixes the dimension mismatch, and also fixes problem with large entries.
Notice that the error will just depend on G−1(C1), which has (0, 1) entries which are
small.

skT · C0 ·G−1(C1) =(skT · pk ·R0 + m0 · skT ·G) ·G−1(C1)

=skT · pk ·R0 ·G−1(C1) + m0 · skT · C1

= skT · pk ·R0 ·G−1(c1) + m0 · skT · pk ·R1︸ ︷︷ ︸
error

+m0 ·m1 · skTG

error =skT · pk ·R0 ·G−1(c1) + m0sk
t · pk ·R1

= skTpk︸ ︷︷ ︸
eT

(R0 ·G−1(C1) + m0 ·R1)

Notice that each term is small, so error is small. So, we got what we want,

C0 ⊕ C1 = C0 ·G−1(C1) = m0 ·m1sk
TG + e′

where e′ is small.

7



Questions

Q. Just because G−1 and R1 are zero/one, they are still large matrices so multi-
plying them might result in large error.

A. Error is going to be poly(m). After computation of depth t, error is poly(n)t.
One solution is to ensure q >> poly(n)t. Another is bootstrapping.

6 Next Time: Bootstrapping Theorem

The bootstrapping theorem will show how to take FHE for shallow computations
(ones with a priori bounded depth) and build FHE for arbitrary computation. There
will be a heuristic component (we can’t necessarily prove this in general) but it seems
to work for the encryption schemes we have.

Also, we will show security for the FHE scheme.

Questions

Q. Are there any other ways to do this, this seems rather inefficient.

A. Short answer is no. If you just want only additive or only multiplicative ho-
momorphic encryption, there are much faster ways. But for fully homomorphic
encryption, there are only two known routes, and the one we didn’t show, ob-
fuscation, is even worse in terms of efficiency. Overhead is around 106 to 109

operations per homomorphic operation, and bootstrapping is even worse, one
step of the bootstrap scheme corresponds to many of the underlying scheme.

Using clever optimizations, the state-of-the-art is to have the bootstrapping in
something on the order of one second. This is certainly not ready for commercial
applications, that said in the past ten years since its been invented, the overhead
has come down substantially, and we can now do non-trivial operations with
FHE.

8


	Introduction
	Fully Homomorphic Encryption
	Key features
	Trivial ``Solution''
	El Gamal: Multiplicative Homomorphism
	Lattice-based scheme: Additive Homomorphism

	Attempt 0
	Idea 1
	Addition
	Multiplication

	Idea 2
	Addition
	Multiplication

	Next Time: Bootstrapping Theorem

