
COS 533: Advanced Cryptography Princeton University
Lecture 12 (3/18, recorded 3/12)
Lecturer: Mark Zhandry Scribe: Alex Valtchanov

Notes for Lecture 12

1 Last Time

Last class, we introduced Identity-Based Encryption (IBE).

Definition 1 Identity-Based Encryption (IBE)

Syntax:

(mpk,msk)← Gen(1λ)
c← Enc(mpk, id,m)

skid ← Extract(msk, id)
m← Dec(skid, c)

Correctness:

∀ (mpk,msk)← Gen(1λ), id,m, skid ← Extract(msk, id)

Pr[Dec(skid,Enc(mpk, id,m)) =m] = 1

Security:

Let the adversary be denoted A and the challenger be denoted C. The IBE security
game is defined as follows:

1. C runs (mpk,msk)← Gen(1λ) and sends mpk to A.

2. A is allowed queries to Extract in which A sends an identity id to C and C
responds with skid ← Extract(msk, id).

3. A makes a challenge query by sending a new identity id∗ /∈ {idj} and two
messages m0,m1 to C. C responds with c∗ ← Enc(mpk, id∗,mb).

1



4. After the challenge query, A can continue to make queries to Extract with any
identity id ≠ id∗.

A wins if it can guess the bit b. Security is defined as usual, where the IBE scheme
is secure if, for all PPT A, the advantage of A in guessing b in the IBE security
experiment is negligible.

2 Identity-Based Encryption from Pairings

Let G be a group with order p and generator g. Assume a pairing e ∶ G ×G → G2.
Assume a hash function H ∶ {0,1}∗ → G that maps identities to random-looking
group elements.1 Our goal is to construct an IBE scheme (Gen,Extract,Enc,Dec).
We define the scheme as follows:

• Gen(1λ) ∶ Choose a random a← Zp and set msk = a,mpk = ga.

• Extract(msk, id) ∶ Output skid =H(id)a.

• Enc(mpk, id,m) ∶ Choose a random b← Zp and output (gb, e(H(id), ga)b ×m).2

• Dec(skid, (c, d)) ∶ Output e(skid, c)−1 × d.

Note that

e(H(id), ga)b = e(H(id), g)ab

= e(H(id)a, gb)
= e(skid, gb)

Furthermore, Dec(skid,Enc(mpk, id,m)) is given by

e(skid, c)−1 × d = e(skid, gb)−1 × e(H(id), ga)b ×m
= e(H(id)a, gb)−1 × e(H(id), ga)b ×m
= e(H(id), ga)−b × e(H(id), ga)b ×m
=m

1We will not formally specify the requirements for G, but assume that H(id) is a group element
for which computing the discrete log of is hard.

2Interpreting e(H(id), ga) as a public key for id, encryption is somewhat analogous to that of
ElGamal encryption in which Bob sends the ciphertext (gb, gab ×m) (a and ga are Alice’s secret
and public keys, respectively). Note that both ElGamal and this construction assume messages are
group elements (in this case, of G2).

2



We can interpret e(H(id), ga) as a public key for the user with identity id that anyone
can compute for themselves in order to encrypt a message to id. On the other hand,
only the holder of the secret key skid can decrypt such a message as shown above.

Earlier we discussed that IBE, intuitively, compresses a set of public keys into a single
master public key. In this construction, we have a set of public keys e(H(id), ga) that
contain the hash of the identity id paired with the master public key ga. These public
keys are compressed into a single master key by giving out ga and letting everyone
compute e(H(id), ga) for themselves using the pairing.

Unfortunately, the assumption of a collision-resistant hash function is not enough to
prove security. Instead, security is proved in the Random Oracle model.

Definition 2 (Random Oracle model) A hash function H is instead assumed to be a
truly random function that the adversary can only access through a polynomial number
of queries.

The Random Oracle model reflects an ideal hash function. In particular, the only
information available to an adversary is simply the evaluation of the function on a
polynomial number of input points of their choice.

Let A be an adversary for the pairing-based IBE scheme. In the Random Oracle
model, for any id, H(id) is a random element gc for some c. Note that g and ga are
public. Prior to the challenge query, the adversary A chooses an identity id∗ and can
compute H(id∗) = gc. After sending id∗ (and two messages m0,m1), A receives a
ciphertext (gb, e(H(id∗), ga)b ×m) (where m is either m0 or m1). Note that

e(H(id∗), ga)b ×m = e(gc, ga)b ×m
= e(g, g)abc ×m

Hence, the adversary sees

View(A) = (g, ga, gb, gc, e(g, g)abc ×m)

Finally, recall the Bilinear Decisional Diffie-Hellman (BDDH) assumption, which
states that

(g, ga, gb, gc, e(g, g)abc) ≈c (g, ga, gb, gc, e(g, g)d)

Where d is random. Assuming BDDH3, e(g, g)abc is computationally indistinguish-
able from a random element of G2. Therefore, e(g, g)abc × m0 is computationally
indistinguishable from e(g, g)abc ×m1.

In our analysis of View(A), we ignored the adversary’s access to Extract queries. We
will omit this detail that may be assigned in a future homework.

3It is widely believed that BDDH holds on pairing-based groups.

3



Question from Student:

How much stronger of an assumption is the Random Oracle model than a Collision-
Resistant hash function?

There is much debate in the Crypto community regarding Random Oracles. Proofs in
the Random Oracle model are referred to as heuristics, since Random Oracles do not
reflect the reality of a concretely-coded hash function. In practice, it turns out that
this heuristic is very important since most practical schemes make use of Random
Oracles for security. To this end, practitioners generally are fond of the Random
Oracle model.

On the other hand, theoreticians are possibly more split on this topic and would
generally say that it would be much better to not rely on the Random Oracle heuristic.
In fact, there are counterexamples of schemes, though contrived, that are secure in the
Random Oracle model, but no matter how the hash function is instantiated, end up
being broken. Hence, there is no hope for a generic theorem that allows any Random
Oracle to be replaced by a Collision-Resistant hash function (or perhaps something
even stronger).

For most non-contrived schemes, however, it appears to be the case there there are not
such attacks and the Random Oracle model in some ways reflects the state-of-the-art
in terms of attacking such schemes.

3 What is Known for Constructing IBE

IBE can be constructed from each of the following assumptions:

• Pairings without the Random Oracle model

Unfortunately, this scheme is more complicated and less efficient than the
scheme presented above.

• Computational Diffie-Hellman (CDH) on plain groups (no pairings)

This was a big theoretical breakthrough from a few years ago and is highly
non-trivial. The construction employs Non-black box use of the group. In our
applications, we do not need to know the code of the group or pairing (for
example, we can simply multiply or exponentiate group elements through the
interface of the group). In contrast, this result uses the actual code of the group
description to do interesting things.

This result is interesting as it illustrates how to do novel things by making
non-black box use of the underlying building blocks of the group. However,

4



non-black box techniques are usually very inefficient. When using a non-black
box technique, the group is first converted into a boolean circuit, and then all
operations are performed gate-by-gate.

• Factoring

The above result result actually implies IBE from factoring. It turns out that
a group can be built from factoring where CDH is hard, but the construction is
still impractical for the same reasons as above.

• Learning With Errors (LWE)

This can be done by building off of the PKE scheme from LWE we saw in class.
The construction requires some effort.

• Quadratic Residuosity

Definition 3 (Quadratic Residuosity) Given integers x and N , the Quadratic
Residuosity problem is to decide if x is a quadratic reside modulo N , that is, if
∃y ∶ x ≡ y2 (mod N).

The Quadratic Residuosity problem is not known to be as hard as factoring.
The only known attack is to factor N and decide quadratic residuosity modulo
each of the factors.

4 Constructions from IBE

4.1 IBE Ô⇒ Signatures

From a feasibility perspective, signatures can be made from One-Way Functions
(OWFs)– the simplest object in Cryptography. However, building signatures from
IBE can lead to very efficient signatures. As we will see, using the pairing-based IBE
construction from above results in the shortest practical signatures known.

Let (Gen,Extract,Enc,Dec) be an IBE scheme. Our goal is to construct a signa-
ture scheme (Gen′,Sign,Ver). We define the scheme as follows:

• Gen′(1λ) = Gen(1λ). In particular the secret key for signing sk = msk and the
public key for signing pk =mpk.

• Sign(sk, x) ∶ Output σ = skx ← Extract(msk,x). Here, we interpret the mes-
sage x as an identity. Notice that the secret key for user x constitutes a signature
on x.

5



• Ver(pk, x, σ) ∶ Choose a random message m from the message space of the IBE
scheme. Let c ← Enc(pk, x,m) and compute m′ ← Dec(σ, c). Output 1 iff
m =m′.4

For security, we provide a proof sketch. Notice that by interpreting messages of
the signature scheme as identities of the IBE scheme (and consequently signing by
extracting a secret key), the security experiment for the proposed construction lines
up exactly with the IBE experiment except for the challenge query.

Let A be an adversary for the proposed signature scheme. To construct an adver-
sary for the IBE scheme, simply forward all queries from A to the IBE challenger.
A will produce a forgery (x∗, σ∗). Take this forgery to produce a challenge query
(x∗,m∗

0,m
∗

1) for random messages m∗

0,m
∗

1 that the challenger will respond to with
a ciphertext c∗ ← Enc(mpk,x∗,m∗

b ). To distinguish between the two cases, try to
decrypt c∗ with σ∗. If σ∗ was indeed a valid signature on x∗, then σ∗ is a valid secret
key skx∗ that can decrypt c∗.

4.1.1 Application: Short signatures from pairing-based IBE

Now, we will apply the above signature scheme to the pairing-based IBE scheme from
Section 2. We have the following signature scheme:

• Gen(1λ) ∶ Set pk = ga, sk = a.

• Sign(sk, x) ∶ Ouput H(x)a.

• Ver(pk, x, σ) ∶ Check e(σ, g) ?= e(H(x), pk).

For Ver(pk, x, σ), plugging in the pairing-based IBE scheme directly to the signature
construction yields

m
?= Dec(σ,Enc(pk, x,m))

m
?= Dec(σ, (gb, e(H(x), pk)b ×m))

m
?= e(σ, gb)−1 × e(H(x), pk)b ×m

e(σ, gb) ?= e(H(x), pk)b

e(σ, g) ?= e(H(x), pk)

Note that signatures in this scheme are only a single group element. Without pairing-
based IBE signatures, the shortest known signatures are essentially two group ele-
ments. In practice, this constant-factor improvement is important.

4Note that if σ = skx is actually a secret key for user x, then we should be able to decrypt an
IBE message using σ.

6



4.2 IBE Ô⇒ CCA Secure PKE

Definition 4 (Chosen Ciphertext Attack (CCA) Security). Let the adversary be de-
noted A and the challenger be denoted C. The CCA security game is defined as
follows.5

1. C runs (pk, sk)← Gen(1λ) and sends pk to A.

2. A is allowed queries to Dec in which A sends a ciphertext c to C and C responds
with m← Dec(sk, c).

3. A makes a challenge query by sending two messages m∗

0,m
∗

1 to C and C responds
with c∗ ← Enc(pk,m∗

b ).

4. After the challenge query, A can continue to make queries to Dec with any
ciphertext c ≠ c∗.6

A wins if it can guess the bit b. Security is defined as usual.

Let (Gen,Extract,Enc,Dec) be an IBE scheme and let (Gen0,Sign,Ver) be a one-time
strongly secure signature scheme.7 Our goal is to construct a public-key encryption
scheme (Gen′,Enc′,Dec′). We define the scheme as follows:

• Gen′(1λ) = Gen(1λ). In particular, pk =mpk, sk =msk.

• Enc′(pk,m) ∶ Run (sk0, pk0) ← Gen0(1λ). Interpret pk0 as an identity of the
IBE scheme. Compute c ← Enc(pk, id = pk0,m) and σ ← Sign(sk0, c). Output
(pk0, c, σ).

• Dec′(sk, (pk0, c, σ)) ∶ Run Ver(pk0, c, σ). If verification fails, abort and output
an abort message ⊥. If verification passes, compute skpk0 ← Extract(sk, pk0)
and output m← Dec(skpk0 , c).

In this construction, we sacrifice the identity-based aspect of the IBE scheme, but
gain CCA security. We make use of the signature scheme by generating a fresh key-
pair each time we want to decrypt (this is why we only need one-time security), and
signing each message to the public key of the signature scheme during that particular
run of the encryption algorithm. We will see why this is important for CCA security.

5This is a definition of CCA security for public-key encryption. We omit CPA queries since
anyone can encrypt messages for themselves.

6CCA for PKE is very strong notion of security. The adversary is given the ability to encrypt
any message and decrypt any ciphertext except c∗ (otherwise, the adversary trivially wins). Despite
this ability, the adversary still cannot learn anything about the plaintext.

7We have seen how to build one-time signature schemes from OWFs, and with some effort, one
can achieve strong security. We will take such signature schemes for granted since IBE Ô⇒ OWF.

7



In proving CCA security, the main difficulty is handling CCA queries. Let A be an
adversary for the proposed PKE scheme. Suppose that the challenge ciphertext (that
is sent to A) is (pk∗0 , c∗, σ∗). Now, consider a CCA query (pk0, c, σ) from A. From the
definition of the CCA security experiment, (pk∗0 , c∗, σ∗) ≠ (pk0, c, σ). In particular,
the tuples must differ in at least one place.

• Case 1: pk0 ≠ pk∗0 .

Since the identities are not the same, we can submit an Extract query on
identity pk0 to the IBE challenger and get skpk0 . Then, we can decrypt (pk0, c, σ)
as normal via Dec(skpk0 , c).

• Case 2: pk0 = pk∗0 , c ≠ c∗.

If Ver(pk0, c, σ) = 1, (pk0, c, σ) must constitute a signature forgery since c ≠ c∗
is a different message that is validated under the same public key pk0 = pk∗0 .
Hence, the security of (Gen0,Sign,Ver) would be broken. If Ver(pk0, c, σ) = 0,
then we can simply respond with ⊥.

• Case 3: pk0 = pk∗0 , c = c∗, σ ≠ σ∗.

Invoking the strong security of (Gen0,Sign,Ver), this case is identical to the
case above.

Definition 5 (Strong One-Time Security). Let the adversary be denoted A and the
challenger be denoted C. The strong one-time signature security game is defined as
follows:

1. C runs (pk0, sk0)← Gen0(1λ) and sends pk0 to A.

2. A is allowed one query to Sign in which A sends a message c to C and C responds
with σ ← Sign(sk0, c).

3. A attempts a forgery by sending a message-signature pair (c′, σ′) .

A wins if (c′, σ′) ≠ (c, σ) and Ver(pk0, c′, σ′) = 18

The one-time signatures we saw in class are also strongly secure if the underlying
function is injective, or at the very least collision resistant. Thankfully, from a prac-
tical perspective, such OWFs are not hard to instantiate. However, it is possible to
build a strongly one-time secure signature scheme from a theory perspective using
only the minimal assumption of a general OWF.

8The only difference with weak one-time security is that c′ ≠ c instead of (c′, σ′) ≠ (c, σ). In
particular, A also wins in the strong security experiment if it can come up with a different signature
σ′ for the same message c′ = c.

8



5 Hierarchical IBE

In plain IBE, the master secret key msk is held by a trusted authority, and it links
all the secret keys of all the users. With this paradigm, these are the only two types
of users. A natural extension is to introduce a hierarchy where each user of one
particular level is viewed as a trusted authority for another set of users at a lower
level.

We can imagine the identities of users as a tuple which has length equal to the level
of the hierarchy (level 0 is the holder of msk and has identity {}, level 1 identities are
a single id, level 2 identities are a tuple (id, id′), and so on). With this construction,
anyone can issue identities to anyone below them, as well as decrypt messages sent
to themselves or sent to anyone below them.

We can construct HIBE from the following assumptions (much like plain IBE):

• Pairings

• CDH

• Factoring. This follows from CDH for the same reasons as before.

• LWE

With an n-level HIBE scheme, the construction above yields an (n − 1)-level CCA
secure HIBE scheme. This extends the original trade-off of IBE Ô⇒ CCA secure
PKE in which one “level” of identity-based encryption was lost for a gain in CCA
security.

HIBE is a special case of Attribute-Based Encryption, which has more complex access
policies (we may touch on this topic later in the course). With HIBE, any user can
encrypt to any string of identities, and any user whose identity is a prefix of that
string will be able to decrypt. To this end, HIBE corresponds to a prefix-based access
policy.

9


	Last Time
	Identity-Based Encryption from Pairings
	What is Known for Constructing IBE
	Constructions from IBE
	IBE -3.1mu Signatures
	Application: Short signatures from pairing-based IBE

	IBE -3.1mu CCA Secure PKE

	Hierarchical IBE

