
COS 533: Advanced Cryptography Princeton University
Lecture 11 (March 11, 2021)
Lecturer: Mark Zhandry Scribe: Qinhan Tan

Notes for Lecture 11

1 Introduction

Last time, we introduced Non-interactive Zero-knowledge (NIZK). We talked about
the CRS Model and Hidden Bits Model, then showed how to translate the Hidden
Bits Model into a CRS Model.

Today, we are going to construct NIZK in Hidden Bits Model for all languages in NP.
We will first contruct a NIZK for Hamoltonian cycle. Then, using NP reductions,
this gives a NIZK for all NP problems.

After NIZK, we will talk about Identity-based Encryption.

2 NZIK for Hamiltonian Cycle

Given a graph G = (V,E), it has a Hamiltonian cycle if there is a cycle that visits all
nodes without repeats. The Hamiltonian cycle problem is NP-complete.

We are going to construct a protocol in the Hidden Bits Model where a prover (P)
can convince a verifier (V) that a graph G has a Hamiltonian cycle. Assume that P
knows G and a Hamiltonian cycle, while V C1, while V only knows G. Everything
from here will be efficient.

Protocol:

Recall that in the Hidden Bits Model, P knows a crs which should be a uniformly
random bit string, while V only knows a subset of crs specified by a set of locations L
determined by P . We will cheat a little bit for now and return to this later. Assume
that crs ∈ {0, 1}n×n is a random cycle matrix. It’s like an adjacency matrix of a
graph that is just a cycle. Let σ denote the cycle represented by crs.

P is going to choose a random permutation f on labels of end vertices of edges,
f : [n]→ [n] s.t. f(c) = σ. This means f maps Hamiltonian cycle c into a cycle that
is a part of crs. The proof π that P is going to send to V is f , and L = f(Ē)) (Ē is
the set of all edges not in E). Basically, P takes the graph G, permutes it under f ,

1
P can be inefficient and do brute-force search for the Hamiltonian cycle, or it can be given a

Hamiltonian cycle

1

and then the set of positions of crs it will reveal is exactly the set of edges that are
the images of edges under f that aren’t in the graph. Note that for a honest P , the
only 1’s in the CRS are the images of the Hamiltonian under f by the requirement
that f(c) = σ. All edges outside of the graph are 0 so the crsL that’s revealed to V

is all 0’s. crsL would be a length |L| string of all 0’s.

After receiving π, L, crsL, V will output 1 iff. L = f(Ē) and crsL = 0|L|.

Soundness:

Suppose G does not contain a Hamiltonian cycle, then there does not exists a f such
that f(E) covers c. In other words, ∀f, ∃e ∈ σ s.t. e 6∈ f(E), which is equivalent to
e ∈ f(Ē). Then crsf(Ē) will contain at least one 1. Thus, V will reject.

Zero-knowledge:

Recall that we first choose a random cycle σ, and choose a random permutation
that maps the particular Hamiltonian cycle to σ. This is equivalent to choosing a
truly random permutation f and let σ = f(c). Thus, what V sees are a random
permutation f , f(Ē) and 0|E|. We can construct the following simulator:

S(G): choose a random permutation f and output (f, f(Ē), 0|E|).

The only left issue is that crs is not a truly random string, but has some structure.
We have to modify things to allow us to mimic the structure with a truly random
string. The solution is to choose crs ← {0, 1}n

2×n2

where each bit is i.i.d. such that
each bit is 1 with probability 1

n3 (not uniformly random). Then, let’s define crs′ as
the subset of rows and columns containing a 1. We can make a claim (we won’t prove
it) that crs′ is a cycle matrix with probability at least 1

n3

2. Now, we will make a few
modifications to the above protocol.

(1) If crs′ exists, then P will use crs′ in the protocol and reveal all bits outside
of crs′. V will verify that all the bits outside of crs′ are 0. If there exists the
Hamiltonian cycle, it must be within crs′ and then the soundness of the protocol
works.

(2) If crs′ does not exist, then the prover will set π = {} and L to be everything
(reveal all bits of crs). V checks that crs does not consist of a cycle of length
n.

Zero-knowledge is straightforward from above. In case (1), V sees a random permu-
tation f and a bunch of 0’s. In case (2), V sees a random malformed crs. Both cases
can be simulated. Soundness is a big issue. If crs is not well formed, P wo;; trivially
convince the verifier. This means we can only catch a cheating P with probability

2The intuition is that we have n
4 different bits where each bit has 1

n
3 probability to be 1, so in

expectation there are n 1’s. Then with good probability all 1’s will be in distinct rows and columns.

With a sort of careful analysis, we can show that the probability that crs′ being a cycle is about 1

n
3

2

1
n3 , when crs is well formed. The solution is to repeat λn3 times to reduce the cheat-
ing probability to 2−O(λ). For NIZKs, parallel and sequential repetition are identical,
which is different from interactive zero knowledge3.

The last piece is that crs is still not uniformly random, so we need to generate these
i.i.d. bits that are 1 with probability 1

n3 . For each of these bits, we will generate
log(n3) uniformly random bits, set the bit to be the logical AND of all of them. To
reveal a logical bit, P just reveals the corresponding log(n3) real bits. Thus, the
actual crs ∈ {0, 1}n

3λ×n2×n2×log(n3). This completes the proof.

3 Identity-based Encryption (IBE)

With public key encryption, you need to tell everyone your public key. This causes
difficulty in recording long public keys. In IBE, the public key is just a bit-string that
represents one’s identity which might be email address or phone number. There’s no
restriction on the length of the identity because you can use a collision resistant hash
function to hash your identity.

To be able to decrypt using a secret key other than the identity, IBE needs a trusted
authority who will run a setup algorithm to give all of the users their specific secret
key. The setup algorithm will generate a master public key mpk and a master secret
key msk.

Syntax:
(mpk,msk)← Gen(1λ)
c← Enc(mpk, id,m)

skid ← Extract(msk, id)
m← Dec(skid, c)

.

Correctness:
∀(mpk,msk)← Gen(1λ), id,m, skid ← Extract(msk, id)

Pr[Dec(skid,Enc(mpk, id,m)) = m] = 1

Security:

The security goal is that no users but id decrypt messages to id. We also want
collusion resistance in case some users collude, where an adversary who are actually
a group of users may use multiple skid to hack another user. The security game is
described as follows:

(1) The chanllenger Ch runs (msk,mpk) ← Gen(1λ) and sends mpk to adversary

3We have a statement that for zero knowledge you can’t necessarily do parallel repetition and

preserve their own knowledge. You can only do sequential repetition and preserve their knowledge.

3

A.

(2) A sends an id to Ch.

(3) Ch responses with skid ← Extract(msk, id).

(4) A may repeat the sk query in (2) for many times get responses as in (3). Then
at some point, A will send a challenge query (id∗ 6∈ {id queried so far},m0,m1).

(5) Ch responses with c∗ ← Enc(mpk, id∗,mb).

(6) A will try to guess b and output b′. During this period, A is still allowed to do
(2) and gets a skid as long as id 6= id∗.

Because A can encrypt messages by themselves, Enc needs to be randomized.

Trivial Construction:

When there are only a polynomial number of ids, namely id ∈ 0, . . . , t = poly(λ),
there is a trivial solution:

Gen(1λ): Generate t (pki, ski) for a PKE scheme. mpk = {pki},msk = {ski}

Extract(msk, id) = skid

Enc(mpk, id,m) = EncPKE(pkid,m)

Dec(skid, c) = DecPKE(skid, c)

The security simply follows from the security of the PKE scheme. This trivial example
shows that what makes IBE challenging is IBE needs to compress exponentially many
public keys into a single mpk.

The following is a sketch of an IBE for large identities, but without collusion resis-
tance:

mpk is a 2 × n grid of public keys of a PKE: pk10, pk11, pk20, pk21 . . . pkn0, pkn1, and
msk is the grid of corresponding secret keys.

For Enc(mpk, id ∈ {0, 1}n,m), we choose random mis.t. ⊕
n
i=1 mi = m. Let ci =

EncPKE(pki,idi ,mi).

The idea is that in encryption, the identity id is used to select public keys to do
encryptions. And the secret key holder for identity id will have the corresponding
secret keys for the selected public keys and will be able to recover all mis, while any
other identity will not be able to recover all mis.

4 Next

Using algebraic constructions to achieve collusion resistance for large identities.

4

	Introduction
	NZIK for Hamiltonian Cycle
	Identity-based Encryption (IBE)
	Next

