
COS 533: Advanced Cryptography Princeton University
Lecture 10 (March 9, 2021)
Lecturer: Mark Zhandry Scribe: Zhijun Zhang

Notes for Lecture 10

1 Introduction

Last time, we introduced zero-knowledge proofs, in which a prover P interacts with
a verifier V and tries to convince V that a statememt X is true, without revealing
anything other than the truthfulness of X. We constructed an idealized protocol for
3-coloring involving lockboxes. The basic protocol uses three messages:

1. P first samples uniformly at random a permutation σ of the 3 colors, and re-
colors the vertices to get another 3-coloring π′ = σ ◦ π, where π is the original
3-coloring that P holds. Then P constructs n lockboxes C1, . . . , Cn containing
colors π′(1), . . . , π′(n), respectively, and send all of them to V .

2. V samples a random edge (u, v) ← E(G) and asks P to provide the keys to
Cu, Cv.

3. P sends the requested keys so that V can open Cu, Cv and check if π′(u) 6= π′(v).

This basic protocol is repeated λ|E(G)| times to achieve statistical soundness. Today
we are going to replace the abstract lockboxes with commitment schemes.

2 Commitment

2.1 Definition

A commitment scheme can be thought of as the digital analog of a lockbox. It consists
of two phases. The prover first “commits” to a value X in the commit phase. Then
in the reveal phase, the prover “reveals” the value X, and gives a proof π, which
is analogous to the key to the lockbox, that X is actually what was committed to.
There are two properties that we want a commitment scheme to have.

Hiding Ideally, the prover wants the verifier to learn nothing about X in the commit
phase. We can formally define “learn nothing” much the same way as we defined
security of encryption schemes. Based on different levels of the hiding property

1

that we want, there can be different definitions: perfect hiding, statistical hiding,
and computational hiding1. Note that the hiding property is a property against
the verifier that is required for zero-knowledge.

Binding Informally, the binding property requires that the prover cannot change the
value X after he has commited. In other words, if the prover commits to X,
he cannot later open to X ′ 6= X, by providing X ′ and π′ that looks like a
valid proof. We can also define perfect, statistical, and computational binding
formally. Note that the binding property is a property against the prover.

Remark 1 Both the hiding and binding properties cannot simultaneously be statis-
tical/perfect. Put it another way, one of the two properties has to always be com-
putational. Intuitively, if the hiding property is perfect, it means the distribution of
commitments is independent of X and thus any transcript of the commit phase must
be able to be opened to something else. A computationally unbounded attacker would
be able to accomplish it so the hope is that it’s computationally infeasible. For our
purpose, we want statistical binding because we have already assumed the verifier is
computationally bounded. Also, in the definition of zero-knowledge proofs, ideally we
want that even computationally unbounded prover should be incapable of convincing
the verifier of a false statement, i.e. statistical soundness.

Remark 2 Someone might suggest that in some settings we can expect perfect and
statistical binding to be the same. The intuition is as follows. If the attacker can
sometimes open to another value, then there must exist a valid opening that is dif-
ferent. So the attacker can always find it so long as he is inefficient. This intuition
turns out to be true for non-interactive commitments, where the commitment is lit-
erally a single message from the prover to the verifier. Perfect and statistical binding
collapses to the same thing based on this intuition.

However, for an interactive protocol, what it could be is that the verifier sends a
message to the prover, and the prover commits to something based on that message. It
could be that there are certain bad choices of the verifier’s message that would actually
allow the prover to cheat. But for most choices of the verifier’s message the prover
cannot. Here the probability is taken over the random choices of the verifier during
the commit phase. Perfect binding insists that the attacker succeeds with probability
zero while statistical binding allows for negligible probability.

1Perfect hiding basically means the commitment is perfectly independent of the value X. Statis-
tical hiding roughly says that the distribution of what the verifier learns is statistically independent.
For computational hiding, it is defined in a similar way to the security of encryption schemes. That
is, the distributions of commitments of any two X’s are computationally indistinguishable.

2

2.2 Construction

Assume a PRG G : {0, 1}λ → {0, 1}3λ. We are going to commit to a single bit and
we can extend to many bits just by parallel repetition.

Commit The verifier2 sends r ← {0, 1}3λ to the prover. The prover samples s← {0, 1}λ,
and sends either G(s) or G(s) ⊕ r depending on the commitment bit b. That
is, the prover sends G(s) if b = 0 and otherwise sends G(s)⊕ r.

Reveal The prover sends b, s. The verifier can check easily.

The (computational) hiding property follows immediately from PRG security. Indeed,
from the verifier’s perspective, at the end of the commit phase, G(s) is pseudorandom
and indistinguishable from uniformly random bits. Then what the verifier sees is
always random regardless of b.

To show the (statistical) binding property, observe that if the prover commits to b but
opens to 1− b, this means he is able to find c, s, s′ such that the commitment is c =
G(s) = G(s′)⊕r. Ignoring c, the prover actually finds s, s′ such that G(s)⊕G(s′) = r.
However, such s, s′ exist only with probability ≤ 1/2λ over randomness of r. The
proof follows from a union bound. Note that |{G(s) ⊕ G(s′) | s, s′ ∈ {0, 1}λ}| ≤
|{(s, s′) | s, s′ ∈ {0, 1}λ}| ≤ 22λ. On the other hand, there are 23λ different choices
of r. Therefore, the probability of r ∈ {G(s)⊕ G(s′) | s, s′ ∈ {0, 1}λ} is bounded by
22λ/23λ = 1/2λ as claimed.

Remark 3 The construction above requires transmitting a large number of bits. Ac-
tually, if the goal is to get a commitment scheme from one-way functions or PRGs,
essentially nothing better is known. This construction of commitment and also the
zero-knowledge proof construction are totally impractical for any practical purposes.
One possible thing that could be done is reusing r. But that is not a huge deal as this
protocol is extremely inefficient. In practice, there are more efficient protocols, using
stronger tools (e.g. algebraic tools).

2.3 Commitment from Collision Resistant Hashing

A much better (non-interactive) commitment scheme works as follows. To commit
to a message m, the prover appends some private random bits r, and then hash it
with a collision resistant hash function H. The prover sends the hash H(m, r) to the
verifier. In the reveal phase, the prover simply reveals r to the verifier. The binding

2In the context of commitments, the prover is often called the sender and the verifier called the
receiver. We will keep with prover and verifier since those are the parties used in zero-knowledge
proofs.

3

property follows from collision resistance of the hash function. However, it generally
is going to be only computational since if the hash function is shrinking, there will
be collisions and thus other openings. It turns out that we cannot base the hiding
property on collision resistance of the hash function. But with some tweaks we can
actually get statistical hiding.

The reason why we don’t like this scheme is that its binding property is only com-
putational, which means the proof system we get is only computationally sound so
an inefficient attacker would actually be able to cheat and convince the verifier of
a false statement. The other reason is that we don’t know how to achieve collision
resistance from one-way functions. From a theoretical perspective, we want minimal
assumptions. But again, in practice, we don’t really care about inefficient attackers
so this scheme is fine.

2.4 How Many Rounds are Necessary for ZK

It turns out that at least 3 rounds is necessary for ZK. Here we only sketch a proof
that 1 round is not enough. Suppose for the purpose of contradiction that there exists
a 1-round protocol. Soundness means if X is false, there exists no message π such
that V (X, π) accepts. On the other hand, zero-knowledge means we can simulate
the view of V without knowing a witness. Since the view of V is exactly π, that
means there exists an S such that if X is true, S(X) outputs a π such that V (X, π)
accepts. It immediately follows that to decide the truthfulness of X, we can just run
V (X,S(X)). If X is true, it has to accept. If X is false, it has to reject. Therefore,
this shows that X is actually in the complexity class BPP3, for which ZK is trivial
as the prover does not need to do anything and the verifier can decide X on his own.
With some additional efforts, we can turn this into a proof for two messages.

3 Non-interactive Zero-knowledge Proof (NIZK)

3.1 CRS Model

In non-interactive zero-knowledge proofs, there is a common random string crs ←
{0, 1}q(λ) known to both the prover and the verifier4. Then the prover sends a message
π to the verifier. The protocol still has to satisfy soundness and zero-knowledge. In
fact, soundness is going to be statistical soundness where the probability is taken over
randomness of crs. For zero-knowledge, the simulator S needs to simulate both π and

3BPP stands for bounded-error probabilistic polynomial time, which is essentially the class of
decision problems solvable in PPT with error probability ≤ 1/3.

4In real world, crs could be generated by a trusted third party. It turns out in many (application-
specific) cases, crs could also be generated by one of the parties.

4

crs such that crs looks random and π looks like a valid proof. Note that if S needs
to simulate π for given crs, it is meaningless as the simulator has no extra power5

over the prover and we can again conclude that X is in BPP.

3.2 Application: CCA Security for Encryption

In CCA6 experiments, the attacker is given the ability to make decryption queries on
everything except the ciphertext being attacked, in addition to encryption queries.
CCA-secure PKE is a known challenge. One way that we can do this is upgrade a
CPA-secure PKE plus a NIZK to get a CCA-secure PKE. An inaccurate description
is as follows. To encrypt a message m, what EncCCA(pk,m) does is encrypt under
CPA-security under two public keys, i.e. EncCPA(pk0,m),EncCPA(pk1,m). Suppose
the reduction tries to break pk0 and it uses pk1 to answer CCA queries. That is, the
adversary has the ability to decrypt under pk1 but don’t have the ability to decrypt
under pk0.

Now the problem is that the adversary can submit malformed ciphertexts such as
EncCPA(pk0,m0),EncCPA(pk1,m1). When the reduction tries to decrypt, it cannot
answer correctly. This will break the reduction. The solution is to provide a NIZK
π, as part of the ciphertext, that the ciphertext is well-formed. By the soundness of
NIZK, if the proof verifies that the ciphertext is well-formed, we can now decrypt the
ciphertext just by decrypting either component and we will get the same answer.

As to the question of who generates crs, in this case it is just Gen(·), the setup
algorithm for the public key encryption scheme, in real life. The reason is that Gen(·)
is always assumed to be honest. In the reduction, crs is generated by the simulator
S(·). We don’t go into the details of the reduction.

3.3 Hidden Bits Model

We are going to first construct NIZK in a fake model called hidden bits model, and
then show later how to instantiate the hidden bits model using crypto techniques.
The hidden bits model is similar to the CRS model but is asymmetric. Here only
the prover knows crs ∈ {0, 1}q(λ). Based on crs, the prover construsts π as well as a
subset L ⊆ [q(λ)]. The verifier would get π and crsL, i.e. the bits of crs specified by
L. Note that the prover cannot cheat in the sense that the bits always come straight
from the original crs. The prover can only choose the subset of bits that the verifier
gets to see but does not have the control of the value of the bits.

To go from the hidden bits model to the CRS model, assume a one-way permutation

5In (interactive) zero-knowledge proofs as we previously defined, the extra power of the simulator
is basically the ability to rewind and re-sample.

6CCA stands for chosen ciphertext attack.

5

p : {0, 1}λ → {0, 1}λ and an associated hardcore predicate h : {0, 1}λ → {0, 1}. The
actual crs ← {0, 1}λq(λ) has λq(λ) bits. So for every bit of the hidden bits crs, we
have q(λ) bits in the real crs. We interpret our crs as tuples of λ-bit strings so it has
q(λ) blocks of λ bits. The prover simulates the hidden bits protocol as follows. Let
αi = p−1(crsi), where crsi is the ith block of crs. The ith bit of the hidden bits crs is
crsHBi = h(αi). The prover runs (πHB, L) ← PHB(x, crsHB) (either with or without
a witness), and sends π = (πHB, L, crsHBL , αL) to the verifier. Then the verifier checks
crsHBi = h(αi) and p(αi) = crsi, and simulates V HB. For those bits not revealed by
the prover, αi is hidden by the one-wayness of p and then by the hardcore property
the corresponding crsHBi is also hidden.

Note that the computation of αi is the only inefficient part. To get an efficient
prover, we can replace p with a trapdoor permutation. One candidate for trapdoor
permutations is the RSA scheme we introduced previously.

4 Next Time

Next time, we will construct NIZK in the hidden bits model. The above procedure
can translate it into the CRS model.

6

	Introduction
	Commitment
	Definition
	Construction
	Commitment from Collision Resistant Hashing
	How Many Rounds are Necessary for ZK

	Non-interactive Zero-knowledge Proof (NIZK)
	CRS Model
	Application: CCA Security for Encryption
	Hidden Bits Model

	Next Time

