
COS 533: Advanced Cryptography Princeton University
Homework 3 Due: April 15, 2021

Homework 3

1 Problem 1 (20 points)

In the definition of security for identity-based encryption, we allowed the adversary
to make it’s challenge query on id∗,m0,m1 at any point in the experiment. In many
cases, we don’t know how to directly prove this notion, which is sometimes called
“adaptive” security. Instead, what gets proved is “selective” security, where we re-
quire the adversary to send id∗ at the very beginning of the experiment, even before
seeing the master public key (note that by constraining the adversary, this makes the
definition weaker). The challenge query is then on a message pair m0,m1, and the
message mb is encrypted to the identity id∗.

(a) Show that there are selectively secure IBE schemes that are not adaptively
secure. You may assume as a starting point any selectively secure IBE scheme,
which may or may not be adaptively secure. Then compile it into a selectively
secure IBE scheme which you can demonstrate is not adaptively secure. You
will need to prove the selective security of the resulting IBE scheme, and also
demonstrate an adaptive attack.

(b) Suppose you have a selectively secure IBE scheme for identity space {0, 1}λ.
Suppose the scheme is guaranteed to be sub-exponentially secure. We will take
sub-exponential security to mean that any polynomial time adversary in the
selective security game must have advantage at most 2−λ

c
for some constant

c, 0 < c < 1.

Construct from this scheme an adaptively secure IBE scheme for identity space
{0, 1}λ, which is also sub-exponentially secure for the adaptive security exper-
iment (though perhaps with a difference constant c). Hint: since you have
sub-exponential security, your reduction can take a large sub-exponential loss

of say 2−λ
c′

for any c′ < c, and the resulting advantage will still be negligible.

Remark 1 The best known attacks on essentially all cryptographic assumptions are
at best sub-exponential, so sub-exponential security is usually considered reasonable.
However, it is still considered better to have a reduction that does not require sub-
exponential hardness. Similar tricks can also be used to boost selective versions of
many cryptographic objects to adaptive security, such as attribute-based encryption
and functional encryption.

1



2 Problem 2 (30 points)

(a) Let F = {f1, . . . , ft} be a polynomial-sized collection of arbitrary efficiently
computable functions (that is, t = poly(λ)). Show how to build an FE scheme
supporting secret keys for functions in F from any general public key encryption
scheme. Prove security under the definition seen in class, though you may as-
sume the adversary commits to the challenge messages m0,m1 at the beginning
of the experiment, before seeing the public key (in other words, you only need
to prove selective security). Thus, the interesting case for functional encryption
is when the set of functions supported is at least super-polynomial.

(b) Let f be an injective one-way function. Since f(x) hides x, we would hope that
a functional encryption scheme still hides the message, even if an adversary
gets a secret key for f . To the contrary, devise a functional encryption scheme
supporting a secret key for the function f , satisfying the definition of security
seen in class, but for which the adversary with no secret keys can learn the
message in its entirety. This shows that the definition given in class is not
sufficient for certain applications.

(c) Let F : K × [2λ] → {0, 1} be a pseudorandom function, and consider an FE
scheme supporting the class of functions F = {F (·, x) : x ∈ [2λ]} which have
a fixed input x hard-coded, interpret the plaintext as a secret key k for F ,
and evaluate F (k, x). Here, you will show that, no matter the FE scheme,
the adversary can do something with encryptions of k that he cannot do just
given F (k, x) for several x. Consider a two-stage adversary A = (A0, A1) in the
following experiment:

– First A0 gets the master public key and the secret keys for functions F (·, x)
for x = 1, . . . , t, for a parameter t to be chosen later.

– Then A0 is given an encryption c = Enc(mpk, k) for a randomly chosen key
k

– A0 then produces a string v ∈ {0, 1}t−1.
– A1 then gets all the secret keys that A0 received above, as well as v (but

not c). It receives no other information (in particular, A0 cannot pass state
to A1, except through v). It must output y := (F (k, x))x∈[t].

Note that A0 is certainly able to compute y ∈ {0, 1}t. So in essence A0 is
compressing y into a slightly smaller string v.

(i) Show how, for any functional encryption scheme, there exists a sufficiently
large polynomial t and adversaries A0, A1 that can succeed in the above
experiment with probability 1.

2



(ii) On the other hand, consider adversaries A′0, A
′
1 (for the same scheme and t

as above) for the same experiment, except that A′0 does not get the cipher-
text c, and instead only gets y and the secret keys. Show that, assuming
F is a secure PRF, any efficient A′0, A

′
1 can only win with probability less

than, say, 3/4.

In other words, the compression task is possible given an encryption of k, but
impossible just given the outputs of the various functions on k.

3 Problem 3 (50 points)

In this problem, we will see how to build an identity-based encryption scheme from
assumptions related to factoring. We will first need to define the Legendre symbol for
integer a and prime p:

(
a

p

)
=


0 if a ≡ 0 mod p

1 if there is some x s.t. x 6≡ 0 mod p and x2 ≡ a mod p

−1 otherwise

In other words, the symbol is 1 for non-zero quadratic residues, -1 for non-residues,
and 0 if a mod p = 0. Note that, mod primes, we can determine quadratic reciprocity
efficiently, so we can efficiently compute the Legendre symbol.

For non-prime N , we can extend to the Jacobi symbol as follows. Let N =
∏

i p
ti
i for

primes pi and integers ti. Then
(
a
N

)
=
∏

i

(
a
pi

)ti
. Note that

(
a
N

)
= 0 if a,N share a

common factor, and
(
a
N

)
= ±1 if a,N are relatively prime. Also note that, if a is a

quadratic residue relatively prime to N , then
(
a
N

)
= 1.

(a) Show that the converse is not true. In particular, show that if N = pq for
distinct odd prime factors p, q, exactly half of the a ∈ ZN such that

(
a
N

)
= 1

are quadratic residues, the other half being non-residues. You may use as given
that mod a prime, exactly half of non-zero elements are quadratic residues.

Based on the definition above, computing the Jacobi symbol appears to require fac-
toring N . It turns out, however, that the Jacobi symbol can be computed efficiently.
We won’t prove this fact, but will use it to construct our scheme:

• The master public key contains N = pq where p, q are secret distinct primes.
For each identity id, the master public key also contains a random quadratic
residue aid. The master secret key contains p, q.

3



• The secret key for user id is a square root rid of aid, which can be computed
from p, q efficiently.

• To encrypt a message m ∈ {−1, 1} to a user id, choose a random u such that(
u
N

)
= m (which can be done efficiently by sampling random u until the Jacobi

symbol is m; here we use the fact that the Jacobi symbol can be efficiently
computed). Output c = t+ aid/t mod N

• To decrypt c using rid, output(
c+ 2rid
N

)
=

(
t+ 2rid + r2id/t

N

)
=

(
t(1 + rid/t)

2

N

)
=

(
t

N

)(
1 + ridt

N

)2

= m

Above we used the fact that the Jacobi symbol is multiplicative in the numer-
ator:

(
ab
N

)
=
(
a
N

) (
b
N

)
.

The problem with the above scheme, of course, is that the master public key must
contain all the aid. This limits us to a polynomial number of identities. We will fix
this later, but for now we will discuss security. The quadratic residuosity assumption
is that it is infeasible to distinguish a random quadratic residue from a random non-
residue a conditioned on having Jacobi symbol 1. This assumption requires that
factoring integers be hard, but whether or not it is equivalent is unknown.

(b) Show that, under the quadratic residuosity assumption, encryptions of −1 or 1
to any identity id are indistinguishable. Hint: note that if c = t+ aid/t mod N ,
then c = t0+aid/t0 mod N , where t0 = aid/t mod N . There are two more values
t1, t2 such that c = t1 + aid/t1 = t2 + aid/t2 mod N . What are they? What are
the Jacobi symbols of t0, t1, t2 if aid is a quadratic residue? What if we switch to
aid being a non-residue with

(
aid
N

)
= 1; what are the Jacobi symbols of t0, t1, t2

now?

We will now fix the fact that we need an exponential number of aid to get an ex-
ponential identity space. A first attempt would be to derive aid = H(id) where H
is a well-designed hash function. If we treat the outputs of the has hash function
as random independent values, this almost works. The problem is that aid needs to
be a quadratic residue, but H(id) may not be. Worse, we cannot even tell whether
H(id) is a residue or not, under the quadratic residuosity assumption. We could set
aid = H(id)2 to guarantee a residue, but this will not be secure since anyone can
compute a square root of aid by simply computing H(id).

(c) Suggest a way to fix the above problem. The first step for encrypting to a user
id will be to run hid = H(id). Then from hid, you will derive multiple different aid
values, and encrypt the message relative to each of the aid. Explain how the aid
should be chosen, and what the secret key should look like. Prove security under
the assumption that each of the aid generated are uniformly random elements.

4


	Problem 1 (20 points)
	Problem 2 (30 points)
	Problem 3 (50 points)

