
COS 533: Advanced Cryptography Princeton University
Homework 2 Due: March 12, 2021

Homework 2

1 Problem 1 (30 points)

(a) Suppose you are given a group G of unknown order p, along with a generator
g. The only thing you know about G is that it’s order is between 2λ and 2λ+1.
Assume decisional Diffie-Hellman is still hard on G. Show how to build a non-
interactive key agreement protocol using G. This will require tweaking the usual
Diffie-Hellman protocol.

(b) Back to the known-order setting, suppose decisional Diffie-Hellman is easy on
G (perhaps, because there is an efficiently computable pairing), but that com-
putational Diffie-Hellman remains hard. Explain why the the Diffie-Hellman
key exchange protocol discussed in class no longer yields a pseudorandom key.

(c) Explain how to tweak the protocol to yield a pseudorandom key. Your scheme
should:

– Support keys of length at least λ.

– Remain non-interactive: there is a single message from Alice to Bob and
from Bob to Alice, and both messages are sent simultaneously.

– Before the protocol begins, the only information that Alice and Bob share
is the group G and a generator g.

Remember to prove the security of your protocol.

Hint: for part (c), it will be useful to have the following strengthening of the Goldreich-
Levin theorem. Let S be a PPT algorithm that takes as input the security parameter,
and samples pairs (s, aux). We say that S is computationally unpredictable if, for all
PPT A,

Pr[A(aux) = s : (aux, s)← S(1λ)] < negl(λ)

Let n(λ) be the length of s outputted by S. Then for any computationally unpre-
dictable S, the following two distributions are computationally indistinguishable:

(r, aux, < r, s >) : (aux, s)← S(1λ), r ← {0, 1}n(λ) and

(r, aux, b) : (aux, s)← S(1λ), r ← {0, 1}n(λ), b← {0, 1}

1

2 Problem 2 (40 points)

For most elliptic curves, the pairing operation unfortunately does work as cleanly as
we discussed in class. Concretely, the source group will be G′, which is (inefficiently)
isomorphic to Zp × Zp. In particular, G′ is not cyclic. Then the pairing has the
following features:

• e : G′ ×G′ → GT , where GT is some cyclic group of order p (concretely, it is a
subgroup of the multiplicative group of an appropriate finite field).

• e(g, h) = e(h, g)−1. That is, the pairing is anti-symmetric.

• e is bilinear (e(g1 × g2, h) = e(g1, h) × e(g2, h) and e(g, h1 × h2) = e(g, h1) ×
e(g, h2))

• e is non-degenerate (e(g, h) is not identically 0)

(a) One attempt to construct a pairing of the form we discussed in class is to simply
choose a random g ∈ G′, and let G be the group generated by g. We then let
e simply be the restriction of e to G. Unfortunately, this will not work. Show
that the pairing, when restricted to G, is useless.

(b) The solution, usually, is to define two source groups. Specifically, let g, h ∈ G′
be random in G′, and let G1 be the group generated by g, and G2 the group
generated by h. Then we can consider the pairing e as the restriction to e :
G1 ×G2 → GT .

Show that, with overwhelming probability, e will be non-generate.

(c) The resulting pairing is known as an asymmetric pairing, whereas the kind we
discussed in class with G1 = G2 is known as a symmetric pairing. Working
with asymmetric pairings is a little different that asymmetric, as we will now
discuss.

Explain, intuitively, why the decisional Diffie-Hellman problem might remain
hard on an asymmetric pairing (whereas we know it is easy on a symmetric
pairing).

(d) Explain why the 3-party key non-interactive agreement protocol we discussed
in class is no longer correct on a asymmetric pairing. Formulate a new 3-party
non-interactive key agreement protocol that is correct on asymmetric pairings.
You do not need to prove security, but informally argue why there are no trivial
attacks on your scheme

For those who are interested, some notes:

2

• In general, G1,G2 are not chosen by choosing random generators, but are chosen
rather specifically for practical considerations.

• Symmetric pairings are known, from a special class of elliptic curves called
supersingular curves. Unfortunately, supersingular curves are subject to sub-
exponential attacks based on the MOV attack discussed in class. As a result,
parameters have to be set somewhat higher, resulting in less efficient schemes.

• Symmetric pairings are often referred to as “Type 1”. The asymmetric pairing
discussed above is often referred to as “Type 3”. A “Type 2” pairing is a
symmetric pairing that additionally has an efficient homomorphism ψ : G2 →
G1. This homomorphism resurrects some (but not all) of the features of a Type
1 pairing.

3 Problem 4 (30 points)

In this problem, you will show how to sample from the discrete Gaussian distribution
Dσ,c. You are given the following fact:

Theorem 1 Suppose σ ≥ 1. Let t be a function that grows faster than
√

log λ. Then
there is a negligible function negl such that

Pr[|x− c| > σt(λ) : x← Dσ,c] < negl(λ)

Also, we will assume access to a procedure that samples uniformly random real num-
bers between 0 and 1. We will not worry about the precision of real numbers; assume
we can compute and store infinitely precise numbers.

Let ρσ(y) = e−πy
2/σ2

. Notice that 0 ≤ ρσ,c ≤ 1. Let pσ,c(x) = ρσ(x−c)/
∑∞

z=−∞ ρσ(z−
c). Then pσ,c(x) = Pr[x : x← Dσ,c].

We will use rejection sampling. One approach is to choose a random integer x, and
then with probability pσ,c(x), accept and output x. Otherwise, throw away x and
repeat from the beginning. Notice that in each iteration, any x is outputted with
probability proportional to pσ,c(x). Therefore, once the algorithm terminates, the
distribution of outputs is exactly Dσ,c.

Unfortunately, the above does not quite work for two reasons:

• It is not possible to sample a uniformly random x over all integers (since the
expected length of a random integer is infinite)

• Suppose σ is quite large (say, exponential). Then pσ,c(x) is exponentially small
for all x. In this case, the procedure above will take an exponential number of
iterations to terminate, and is therefore inefficient.

3

Show how to fix the above problems and give a protocol that terminates in an expected
polynomial number of iterations, and outputs a sample x from the discrete Gaussian.
The algorithm may output a distribution that is slightly different from the discrete
Gaussian, but it should be negligibly close (in the parameter λ). You may assume
that σ ≥ 1. Prove that the number of iterations is bounded by a polynomial in λ.

4

	Problem 1 (30 points)
	Problem 2 (30 points)
	Problem 4 (30 points)

