
COS 533: Advanced Cryptography Princeton University
Homework 1 Due: February 25, 2021

Homework 1

1 Problem 1 (20 points)

Let x ∈ {0, 1}λ, and let H : {0, 1}λ → {0, 1} be a function such that H(r) = 〈x, r〉
for at least a fraction p its inputs r. Here, 〈x, r〉 means the inner product mod 2 of x
and r: 〈x, r〉 =

∑λ
i=1 xiri mod 2.

In class, we showed that if p ≥ 3
4

+ ε for a non-negligible ε, then it is possible to
determine x efficiently, given only polynomially-many queries to H. Here, you will
show that this is essentially tight.

(a) Construct two inputs x0 6= x1 and a function H such that H(r) = 〈x0, r〉 for at
least 3/4 of its inputs, and at the same time H(r) = 〈x1, r〉 for at least 3/4 of
its inputs. Note that the two sets of inputs may be different.

This is why, when moving to the regime where p = 1
2

+ ε, we could no longer
give an algorithm that outputted a single x. Instead, we had to output multiple
x values, one of which was the right answer.

(b) Generalize the above construction to more inputs. For any integer n, construct
n distinct inputs x0, . . . , xn−1 and a function H such that H(r) = 〈xi, r〉 for at
least p fraction of inputs simultaneously for all i, where p = 1

2
+ 1

2n
. Here, you

may assume n is a power of 2.

2 Problem 2 (20 points)

In class, we tried to build a signature scheme from any one-way function. However, we
ran into a roadblock, where we needed a one-time signature scheme whose message
space was much larger than its public key. Here, we will use hashing to solve the
problem.

Definition 1 A function H : {0, 1}λ → {0, 1}n(λ), where n(λ) < λ, is collision
resistant if, for all PPT adversaries A, there exists a negligible ε such that

Pr[x0 6= x1 ∧H(x0) = H(x1) : (x0, x1)← A(1λ)] < ε(λ)
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Note that if n(λ) < λ, collisions (x0 6= x1 such that H(x0) = H(x1)) exist in abun-
dance. Yet collision resistance means it is computationally infeasible to actually find
such a collision.

Let (Gen, Sign, Ver) be a one-time signature scheme with public keys of length p(λ)
and messages of length n(λ), where n(λ) may be smaller than p(λ). LetH : {0, 1}m(λ) →
{0, 1}n(λ) be a keyed hash function, where m(λ) is much larger than p(λ). Define
(Gen′, Sign′, Ver′) as the following signature scheme for messages of length m(λ):

• Gen′(1λ) = Gen(1λ).

• Sign′(sk′,M) = Sign(sk, H(M)). That is, first hash the message with H, and
then sign using Sign.

• Ver′(pk′,M, σ) = Ver(pk,H(M), σ).

(a) Show that, if H is collision resistant and (Gen, Ver, Sign) is one-time EUF-CMA
secure, then so is (Gen′, Ver′, Sign′).

(b) Show that the collision resistance of H is also necessary for security. That is,
if H is not collision resistant (but still compressing), then (Gen′, Sign′, Ver′)
cannot possibly be a secure one-time signature scheme.

Collision resistant hash functions are widely believed to exist, and there are many
constructions based on number theory. However, it is also widely believed that a
generic one-way function is not sufficient to build a collision resistant hash function.
Therefore, we are still short of our goal of constructing signatures from arbitrary
one-way functions. Fortunately, a slightly weaker notion of collision resistant hashing
functions, called universal one-way hash function (UOWHF), is possible from one-
way functions, and is sufficient to build signature schemes, albeit with a slight tweak
to the construction above.

3 Problem 3 (30 points)

Here, you will extend the Goldreich-Levin theorem to multiple hardcore bits.

Let F : {0, 1}λ → {0, 1}n(λ) be a one-way function. Let F ′ : {0, 1}kλ+λ → {0, 1}kλ+n(λ)
be the function

F ′(r1, . . . , rk, x) = (r1, . . . , rk, F (x))

Assume k is logarithmic in λ. Consider the functions hi(r1, . . . , rk, x) = 〈ri, x〉. Show
that h1, . . . , hk are all simultaneously hardcore bits for F ′. This means that for any
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PPT adversary A, there exists a negligible ε such that∣∣Pr[1← A(F ′(x′), h1(x
′), . . . , hk(x

′)) : x′ ← {0, 1}kλ+λ]
−Pr[1← A(F ′(x′), b1, . . . , bk) : x′ ← {0, 1}kλ+λ, b1, . . . , bk ← {0, 1}]

∣∣ < ε(λ)

To prove this, you can use the basic Goldreich-Levin theorem as a black box (but
perhaps for a slightly modified one-way function); you do not need to reprove GL
from scratch in this more general setting.

4 Problem 4 (30 points)

A random self reduction is a way to re-randomize an instance of a problem. Here,
you will explore some applications of such random self-reductions.

Let G : {0, 1}λ → {0, 1}2λ be a length-doubling PRG. Let D0 be the distribution
G(x) for a random x. Let D1 be the uniform distribution over {0, 1}2λ.
We will say that G has a perfect random self reduction is there is a PPT ReRand :
{0, 1}2λ → {0, 1}2λ such that the following is true:

• For any fixed y ∈ {0, 1}2λ in the image of G, ReRand(y) samples from D0.

• For any fixed y ∈ {0, 1}2λ not in the image of G, ReRand(y) samples from D1.

A random self reduction means that a random instance is as hard as the hardest
instance. Indeed, given any supposedly hard instance y, we can apply the random
self reduction to get a random instance, and solving the random instance lets us solve
y. Note that such ReRand may exist without being able to tell whether y is in the
image of G or not (which would violate PRG security). We will assume we have a
G that is both a secure PRG and admits a perfect random self reduction. We now
consider a couple applications.

(a) Suppose a PPT adversary A can run in time T and break G with advantage ε.
Construct an adversary B running in time poly(T, 1/ε) which can break G with
advantage 99/100. In other words, a random self reduction lets you boost the
probability of distinguishing.

(b) In class, our construction of a PRF from a PRG incurred a “loss” of nq, where
n is the number of input bits and q is the number of queries. In other words, a
PRF adversary with advantage ε is turned into a PRG adversary with advantage
ε/nq.

In practice, this “loss” is important. If a different construction had a loss n
or even 1, then the PRG only needs to be secure against attacks with higher
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success probability ε/n or even ε, meaning the security parameter can be set
lower. This in turn improves the efficiency of the protocol.

If G has a perfect random self reduction, show how the loss in the reduction for
the PRF we saw in class can be improved to just n. That is, starting with a
PRF adversary with advantage ε, derive an adversary for G with advantage at
least ε/n.

(c) Unfortunately, random self reductions seem unlikely to exist for general PRGs.
As evidence, we will show that breaking G with a random self reduction is
very close to lying in the complexity class NP ∩ coNP . Thus, the existence
of a re-randomizeable PRG requires hardness in NP ∩ coNP . It is believed
that one-way functions can exist without requiring such hardness (though hard
problems in NP ∩ coNP are widely believed to exist).

To make our lives easier, assume that it is possible, for any security parameter
λ, to deterministically compute some y that is not in the range of G, in time
polynomial in λ. Call this “Assumption 1”. Note that it is possible to sam-
ple y not in the image of G by simply sampling a random string in {0, 1}2λ;
Assumption 1 requires that it is possible to deterministically generate such a y.

Then, assuming G has a perfect random self reduction, show the following:

(i) There is an polynomial p1(λ) and a polynomial-time deterministic algo-
rithm V1(y, w) that takes y ∈ {0, 1}2λ and w ∈ {0, 1}p1(λ) and outputs a
single bit, such that y is in the image of G if and only if there exists a w
such that V1(y, w) = 1. This shows that breaking G is in NP .

(ii) There is another polynomial p2(λ) and polynomial-time deterministic al-
gorithm V2(y, w) that takes y ∈ {0, 1}2λ and w ∈ {0, 1}p2(λ) and outputs
a single bit, such that y is in the image of G if and only if there does not
exist a w such that V2(y, w) = 1. This shows that breaking G is in coNP .

For a hint, note that ReRand can be made deterministic by explicitly feeding in
the random coins: ReRand(y) = ReRand(y; r) for random coins R from some set
{0, 1}p(λ). You will use the deterministic version of ReRand in your constructions
of V1, V2.

Thus a re-randomizeable PRF satisfying Assumption 1 requires there to be hard
problems in NP ∩ coNP . We can eliminate Assumption 1 by relaxing NP and
coNP to randomized variants called AM and coAM .
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