
COS 433: Cryptography (Spring 2018) Princeton University
Project 2 Due: April 19, 11:59pm

Project 2

Introduction

You are interning at the super secretive TLA (Three Letter Agency) again. This time,
the TLA is analyzing a hash function used by rival intelligence agencies, called BAH
(Bad Algorithm for Hashing). Your goal is to cryptanalyze the BAH hash function.
As before, you will work in teams; we recommend keeping the same teams as for
Project 1.

Here is the pseudocode for the BAH hash function:

function BAH(M)
M ← PadToMultiple(M, 256)
arr ← ToArray(M, 2)
state← Array(512)
for i← 0 ; i < length(arr)/128 ; i← i + 1 do

m← Join(arr[128× i, 128× (i + 1)], Array(384))
state← (state + m) mod 4
state← Transform(state)

end for
return ToBits(state[0, 128], 2)

end function

function Transform(state)
state1← state

for i← 0 ; i < 20 ; i← i + 1 do
state1← Round(state1)

end for
return state1

end function

function Round(state)
state1 = Array(512)
for i← 0 ; i < 512 ; i← i + 1 do

j ← (((i + 1) ∗ 289) mod 513)− 1
j ← (j + 151) mod 512
state1[i] = state[j]

end for

1

state2 = Array(512)
for i← 0 ; i < 256 ; i← i + 1 do

state2[2× i] ← S0[state1[2i]][state1[2i + 1]]
state2[2× i + 1]← S1[state1[2i]][state1[2i + 1]]

end for
return state2

end function

S0 = ((3, 1, 1, 1), (2, 1, 0, 3), (2, 2, 2, 3), (3, 0, 0, 0))
S1 = ((2, 2, 3, 0), (1, 1, 2, 1), (2, 0, 3, 0), (3, 1, 3, 0))

Here,

• ToArray(M, `) takes a bitstring M that is assumed to be a multiple of ` bits.
It then partitions M into `-bit pieces, which it then interprets as integers from
0 to 2` − 1. It then outputs the array formed by these `-bit integers.

• ToBits(A, `) is the opposite of ToArray. It takes an integer array A. For each
integer, it converts the integer into a `-bit string (reducing mod 2` if necessary)
and then concatenates all the bits together.

• PadToMultiple(M, `) adds a concatenates to M a padding of the form 10n so
that the result has a length that is a multiple of `.

• Array(n) creates a new array of length n where each entry is initialized to 0

• arr mod b performs the modular reduction component-wise over the elements
of the array. arr1 +arr2 performs addition entry-wise over the arrays arr1 and
arr2.

• Arrays are 0-indexed. arr[i] means get the ith entry, while arr[i, j] means get
entries i through j − 1. arr[i][j] means get the ith entry arr[i] of arr, which
itself is an array; then get the jth entry of arr[i].

1 Part 1: Basic observations

Take a look at the pseudocode for BAH, and describe the overall structure of the
hash function. Examples: is it Merkle-Damgard, Sponge, or something else? What
is the output length? If it is Merkle-Damgard, what is the compression function
(Davies-Meyer or something else)? If it a sponge, what is the state size? For any
underlying substitution-permutation network, how many rounds are used? What is
the domain/range of the S-box. Anything else of note about the function? (Hint:
this function may not operate over binary)

2

2 Part 2: Theory

Your goal in this section is to develop an attack (that is, find a collision) on the BAH
hash function using differential cryptanalysis.

(a) One of the building blocks for the hash function is a substitution-permutation
network. Suppose you knew a differential for the network. Not any differential
will necessarily suffice for finding a collision. Determine some properties of a
high-probability differential that would help you find collisions. Explain how
to find collisions with such “good” differentials. You should answer this ques-
tion without looking at the specific implementation of the underlying SPN —
instead, just use the overall structure from Part 1.

(b) Next, explain what kinds of differentials for the underlying S-box would be
useful for constructing good differentials overall. Again, just look at the overall
structure from Part 1.

(c) Devise a plan for finding two inputs with a “good” differential. Any one dif-
ferential might have low probability, but you will be satisfied finding any two
messages with any “good” differentials.

(d) Estimate the computational cost of your attack. That is, roughly how many
messages will you need to try before finding a collision? This should be based
on the parameters of the hash function, not by applying empirical analysis.

3 Part 3: Attack

Now you will actually turn your plan into action.

(a) Find a collision consisting of two 128-bit messages

(b) Find a collision consisting of two 384-bit messages

(c) Find a collision consisting of two 512-bit messages

(d) Find a collision consisting of two 220-bit messages

(e) Find a collision consisting of two messages which are strings consisting of only
English words and spaces. To hash a string, convert each character into a byte
using the ASCII encoding. The messages do not need to be grammatically
correct English, and there are no length restrictions for the messages. However,
in each message, no word can appear twice, and any two words are separated
by exactly one space, and no two spaces are allowed next to each other.

3

(f) Find a collision between two messages of the form:

Transfer $dddddddddd.dd from account aaaaaaaaaa to account bbbbbbbbbb
on mm/dd/yyyy

Here, dddddddddd.dd is an amount of money (given as a 10 digit dollar amount
and 2 digit cent amount. E.g. 0094000000.01), aaaaaaaaaa and bbbbbbbbbb
are account numbers (given as 10 decimal digits), and mm/dd/yyyy is a 8-digit
date, two digits for month, two digits for date, and 8 digits for year. Your date
should be a valid date.

For this part, you will need an implementation the BAH hash function. Here, the
efficiency of the implementation will affect how long it will take you to find a collision,
so a fast implementation will be desirable. To help debug your implementation, we
have provided a few input/output pairs of the hash function in the file examples.txt.
At the end of the file, there is also an example input/output pair of the round function.

You will also probably need to make some optimizations to your collision-finding
procedure in order to more-quickly find collisions. For example, is it possible to re-
use already existing computations or aborting computations early in some situations.
Please write up any optimizations in your writeup.

Keep in mind that even with optimizations, it still may take several hours of computa-
tion time before you successfully find a collision. Therefore, it recommended to start
with finding collisions in “round-reduced” versions of the function. That is, consider
a weakened version BAH-s, which is identical in every way, except the number of
rounds is set to s instead of the actual round number r. Try finding a collision with
a small number of rounds first. This will give you a sense of how long it will take
to find collisions for the overall function, and will be a quick sanity check that your
attack strategy will work before spending hours of computation time.

In the case that you cannot find a full collision on BAH for some of the settings above,
you may still receive partial credit by submitting a collision for the round reduced
BAH function.

For your writeup, please describe how you approached each problem. Were there any
difficulties you encountered in translating theory to practice? What optimizations
did you perform?

Bonus

Notice that in parts 3(a) through 3(c), we skipped finding a collision between 256-bit
messages. For up to 5 bonus points, explain why 256-bit messages are presumably

4

more difficult, and nonetheless find a collision for two 256-bit messages. Submit your
collision in a clearly marked file. You will receive partial bonus points if you are able
to identify why a collision for 256 bits is more difficult, but unable to find such a
collision.

4 Part 4: Fixing

The weakness you exploited above came from the underlying S-box being poorly
designed. In this part, you will try to fix the hash function by giving it a new S-box.
You are only allowed to change the S-box — everything else about the function stays
the same. In particular, the domain and range of the S-box cannot be changed, only
the particular mapping from inputs to outputs.

Your S-box must still be a permutation (otherwise, can you see how to attack the
scheme?). Design an S-box that resists your differential cryptanalysis from above.
Explain your design choices.

5 Deliverables

Your submission will contain the following 8 files:

• writeup.pdf, which will contain a write-up for each of the 4 parts above. For
Parts 1 and 2, answer the questions given. For part 3, you will you will likely
use some optimizations; include a description of each of your optimizations. For
part 4, explain how you came up with your new S-box. Give an estimate for
the computational cost of finding a “good” differential.

• a.txt, b.txt, . . . , f.txt. These will contain the collisions you found in part
3. The files should have the form message1,message2. For parts (a) through
(d), each message should be represented in binary. For parts (e) and (f), each
message should be a character string.

• sbox.txt, which will contain your new S-box. This file should have the form

S0=((3,1,1,1),(2,1,0,3),(2,2,2,3),(3,0,0,0))
S1=((2,2,3,0),(1,1,2,1),(2,0,3,0),(3,1,3,0))

(these are the S-boxes from the BAH function, which you should replace with
your own).

Additionally, please submit any code you used to find collisions.

Submit your files to: https://tigerfile.cs.princeton.edu/COS433_S2020/PR2

5

https://tigerfile.cs.princeton.edu/COS433_S2020/PR2

6 Grading

Your grade will be determined as follows:

• Writeup: 64 points. This will be based on the thoroughness of your answers to
all of the questions. The breakdown between the different parts is the following:

– Part 1: 12 points

– Part 2: 25 points

– Part 3: 12 points

– Part 4: 15 points

• Cryptanalysis: 24 points. Here, you will get up to 4 points for each collision. If
your collision meets the requirements and is a collision for all rounds, you will
get the full 4 points. If you achieve a collision for s out of r rounds, you will
receive 4× s/r points

• New S-box: 12 points. Here, the teaching staff will try to find a collision for
BAH with your new S-box. If we find a collision in s rounds, you will receive
a score of 12 × (1 − s/r). Note that we will be able to find collisions for some
number of rounds, so it will be impossible to achieve a perfect score for this
portion.

6

	Part 1: Basic observations
	Part 2: Theory
	Part 3: Attack
	Bonus
	Part 4: Fixing
	Deliverables
	Grading

