COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements/Reminders

HW2 Due TODAY HW3 Due March 5th

PR1 Due March 10th

Previously on COS 433...

Left-or-Right Experiment

LoR Security Definition

```
Definition: (Enc, Dec) has Left-or-Right indistinguishability if, for all \mathbb{R} running in polynomial time, \exists negligible \varepsilon such that:

Pr[1\leftarrow LoR-Exp_0(\mathbb{R}, \lambda)]
-Pr[1\leftarrow LoR-Exp_1(\mathbb{R}, \lambda)] \leq \varepsilon(\lambda)
```

CPA Experiment

CPA-Exp_b(\(\big|\))

Generalized CPA Experiment

GCPA-Exp_b(\mathbb{R} , λ)

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

Generalized CPA-security

Therefore, you can use whichever notion you like best

Functions that "look like" random functions

Syntax:

- Key space K_{λ}
- Domain X_{λ}
- Co-domain/range Y_{λ}
- Function $F:K_{\lambda} \times X_{\lambda} \rightarrow Y_{\lambda}$

Correctness: **F** is a function (deterministic)

Using PRFs to Build Encryption

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \mathbf{X}_{\lambda}$
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since F is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

Today: More on PRFs

Security

Theorem: If **F** is a secure PRF with domain X_{λ} and $|X_{\lambda}|$ is superpoly, then (Enc,Dec) is LoR secure.

Assume toward contradiction that there exists a streaking (Enc,Dec)

Hybrids...

b=0 **Hybrid 1:** Challenger $H \leftarrow Funcs(X_{\lambda}, Y_{\lambda})$ $m_0, m_1 \in M_{\lambda}$

Assume toward contradiction that there exists a 🤼 with advantage ε in breaking (Enc, Dec)

- distinguishes Hybrid 0 from Hybrid 3 with advantage ε , so either $\tilde{\mathbb{R}}$
- Dist. Hybrid 0 from Hybrid 1 with adv. ε/2-q²/4|X|
- Dist. Hybrid 1 from Hybrid 2 with adv. q²/2|X|
- Dist. Hybrid 2 from Hybrid 3 with adv. ε/2-q²/4|X|

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

Construct 🦄

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

- Construct
 PRF-Exp₀(), λ) corresponds to Hybrid 0
- PRF-Exp₁(), λ) corresponds to Hybrid 1

Therefore, has advantage ε/2-q²/4|X| \Rightarrow contradiction

Suppose Adistinguishes Hybrid 1 from Hybrid 2

Suppose Adistinguishes Hybrid 1 from Hybrid 2

As long as the **r**'s for every query are distinct, the **y**'s for each query will look like truly random strings

In this case, encrypting $\mathbf{m_0}$ vs $\mathbf{m_1}$ will be perfectly indistinguishable

By OTP security

Suppose Table distinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is **≤Pr**[collision in the **r**'s] < q²/2|X|

Suppose Adistinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...

Using PRFs to Build Encryption

So far, scheme had fixed-length messages

• Namely, $M_{\lambda} = Y_{\lambda}$

Now suppose we want to handle arbitrary-length messages

Security for Arbitrary-Length Messages

Theorem: Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

Output m = m_1 m_2 ..., m_l
```

Theorem: If (Enc,Dec) is LoR secure, then (Enc',Dec') is LoR secure

Proof (sketch)

Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda+1$ bits

 \Rightarrow encrypting **l**-bit message requires $\approx \lambda l$ bits

Ideally, ciphertexts would have size ≈λ+l

Solution 1: Add PRG/Stream Cipher

Solution 2: Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write \mathbf{i} as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{lml})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i)$
 - Compute $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m₁,...,m_l

Handles any message of length at most $2^{\lambda/2}$

Solution 2: Counter Mode

Block ciphers/Pseudorandom Permutations

Pseudorandom Permutations (also known as block ciphers)

Functions that "look like" random permutations

Syntax:

- Key space K_{λ}
- Domain=Range= Χ_λ
- Function $\mathbf{F}: \mathbf{K}_{\lambda} \times \mathbf{X}_{\lambda} \rightarrow \mathbf{X}_{\lambda}$
- Function $F^{-1}:K_{\lambda} \times X_{\lambda} \rightarrow X_{\lambda}$

Correctness: $\forall k,x, F^{-1}(k, F(k, x)) = x$

Pseudorandom Permutations

Pseudorandom Permutations

Pseudorandom Permutations

PRF Security Definition

Definition: \mathbf{F} is a secure PRP if, for all $\mathbf{\Lambda}$ running in polynomial time, \exists negligible $\mathbf{\varepsilon}$ such that:

Pr[1←PRF-Exp₀(
$$\mathring{\chi}$$
, λ)]

- Pr[1←PRF-Exp₁($\mathring{\chi}$, λ)] ≤ ε(λ)

Theorem: Assuming $|X_{\lambda}|$ is super-polynomial, a PRP (F,F^{-1}) is secure iff F is secure as a PRF

Secure as PRP \Rightarrow Secure as PRF

• Assume 🤾 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🦹 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🤾 , hybrids

Secure as PRP \Rightarrow Secure as PRF

• Assume 🐧 , hybrids

Hybrids 0 and 1 are indistinguishable by PRP security

Hybrids 1 and 2?

- In Hybrid 1, 🐧 sees random **distinct** answers
- In Hybrid 2, 🥻 sees random answers
- Except with probability $\approx q^2/2|X_{\lambda}|$, random answers will be distinct anyway

Secure as PRF \Rightarrow Secure as PRP

• Assume \hbar , hybrids

Proof essentially identical to other direction

Suppose (F,F⁻¹) is a secure PRP

Is (F⁻¹,F) also a secure PRP?

Counter Example

Suppose (F,F^{-1}) is a secure PRP. Assume $X=\{0,1\}^n$

Define (H,H⁻¹) as follows:

- Given k, let i be smallest input such that F⁻¹(i) begins with a O
- Let $x_0 = F^{-1}(0^n), x_1 = F^{-1}(i)$

•
$$H(k,x) = \begin{cases} 0^n & \text{if } x = x_1 \\ i & \text{if } x = x_0 \\ F(k,x) & \text{otherwise} \end{cases}$$

How to use block ciphers for encryption

Counter Mode (CTR)

Electronic Code Book (ECB)

ECB Decryption

Security of ECB?

Is ECB mode CPA secure?

Is ECB mode *one-time* secure?

Security of ECB

Plaintex

Ciphertext

Ideal

Cipher Block Chaining (CBC) Mode

(For now, assume all messages are multiples of the block length)

CBC Mode Decryption

Theorem: If (F,F^{-1}) is a secure pseudorandom permutation and $|X_{\lambda}|$ is super-polynomial, then CBC mode encryption is CPA secure.

Assume toward contradiction an adversary ** for CBC mode

Hybrids...

Hybrid 0,1 differ by replacing calls to **F** with calls to random permutation **H**

Indistinguishable by PRP security

Same for Hybrids 2,3

All that is left is to show indistinguishability of 1,2

Idea:

- As long as, say, the sequence of left messages queried by does not result in two calls to on the same input, all outputs will be random (distinct) outputs
- For each message, first query to F will be uniformly random
- Second query gets XORed with output of first query to F ⇒ ≈ uniformly random

Idea:

- Since queries to F are (essentially) uniformly random, probability of querying same input twice is exponentially small
- Ciphertexts will be essentially random
- True regardless of encrypting m_0 or m_1

Reminders

HW2 Due TODAY HW3 Due March 5th

PR1 Due March 10th