COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements/Reminders

HW2 Due Feb 27th HW3 Due March 5th

PR1 Due March 10th

Previously on COS 433...

Length Extension for PRGs

Suppose I give you a PRG $G:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda+1}$

On it's own, not very useful: can only compress keys by 1 bit

But, we can use it to build PRGs with *arbitrarily-long* outputs!

Extending the Stretch of a PRG

Assume towards contradiction 🥻 that breaks big PRG

Goal: build adversary 🕵 that breaks **G**

Proof by Hybrids

H_t:

 H_0 corresponds to pseudorandom \mathbf{x} H_t corresponds to truly random \mathbf{x}

Let
$$q_i = Pr[\hat{x}(x)=1:x \leftarrow H_i]$$

By assumption, $|\mathbf{q}_t - \mathbf{q}_0| > \varepsilon$

Triangle ineq:

$$|q_t - q_0| \le |q_1 - q_0| + |q_2 - q_1| + ... + |q_t - q_{t-1}|$$

$$\Rightarrow \exists i \text{ s.t. } |q_i - q_{i-1}| > \epsilon/t$$

Today: Multiple Message Security

Left-or-Right Experiment

LoR Security Definition

```
Definition: (Enc, Dec) has Left-or-Right indistinguishability if, for all \mathbb{R} running in polynomial time, \exists negligible \varepsilon such that:

Pr[1\leftarrow LoR-Exp_0(\mathbb{R}, \lambda)]
-Pr[1\leftarrow LoR-Exp_1(\mathbb{R}, \lambda)] \leq \varepsilon(\lambda)
```

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Midway Island, WWII:
 - US cryptographers discover Japan is planning attack on a location referred to as "AF"
 - Guess that "AF" meant Midway Island
 - To confirm suspicion, sent message in clear that Midway Island was low on supplies
 - Japan intercepted, and sent message referencing "AF"

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Mines, WWII:
 - Allies would lay mines at specific locations
 - Wait for Germans to discover mine
 - Germans would broadcast warning message about the mines, encrypted with Enigma
 - Would also send an "all clear" message once cleared

CPA Experiment

CPA-Exp_b(\(\big|\))

CPA Security Definition

Definition: (Enc, Dec) is CPA Secure if, for all \mathbb{F} running in polynomial time, \exists negligible ε such that:

Pr[1←CPA-Exp₀(
$$\stackrel{\sim}{\sim}$$
, λ)]
- Pr[1←CPA-Exp₁($\stackrel{\sim}{\sim}$, λ)] ≤ ε(λ)

Generalized CPA Experiment

GCPA-Exp_b(\mathbb{R} , λ)

GCPA Security Definition

Definition: (Enc, Dec) is **Generalized CPA Secure** if, for all β unning in polynomial time, β negligible ϵ such that:

Pr[1
$$\leftarrow$$
GCPA-Exp₀($\stackrel{\sim}{\mathbb{N}}$, λ)]
- Pr[1 \leftarrow GCPA-Exp₁($\stackrel{\sim}{\mathbb{N}}$, λ)] $\leq \epsilon(\lambda)$

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

Generalized CPA-security

We will prove:

Generalized CPA-security

- \Rightarrow CPA-security
- ⇒ LoR indistinguishability
- ⇒ Generalized CPA-security

Generalized CPA-security \Rightarrow CPA-security

 Trivial: any adversary in the CPA experiment is also an adversary for the generalized CPA experiment that just doesn't take advantage of the ability to make multiple challenge/LoR queries

Left-or-Right ⇒ Generalized CPA

- Assume towards contradiction that we have an adversary for the generalized CPA experiment
- Construct an adversary that runs as a subroutine, and breaks the Left-or-Right indistinguishability

 $Pr[1\leftarrow LoR-Exp_b(\sqrt[3]{k}, \lambda)] = Pr[1\leftarrow GCPA-Exp_b(\sqrt[3]{k}, \lambda)]$

 $Pr[1\leftarrow LoR-Exp_b(\sqrt[3]{k}, \lambda)] = Pr[1\leftarrow GCPA-Exp_b(\sqrt[3]{k}, \lambda)]$

Left-or-Right ⇒ Generalized CPA

$$Pr[1\leftarrow LoR-Exp_0(\lambda, \lambda)]$$

=
$$Pr[1 \leftarrow GCPA - Exp_o(\mathbb{R}, \lambda)]$$

- Pr[1←GCPA-Exp₁(
$*$
, λ)] = ε

(regular) CPA \Rightarrow Left-or-Right

 Assume towards contradiction that we have an adversary for the LoR Indistinguishability

• Hybrids!

Hybrid **i**:

(regular) CPA \Rightarrow Left-or-Right

• Hybrid **O** is identical to LoR-Exp₁(λ)

- Hybrid **q** is identical to LoR-Exp₀(λ)
- - $\Rightarrow \exists i \text{ s.t.}$ distinguishes Hybrid i and Hybrid i 1 with advantage ϵ/q

$$Pr[1 \leftarrow CPA - Exp_b(\tilde{h}, \lambda)] = Pr[1 \leftarrow \tilde{k} \text{ in Hybrid } i-b]$$

```
(regular) CPA \Rightarrow Left-or-Right
    Pr[1 \leftarrow CPA - Exp_o(\mathbb{R}, \lambda)]
         - Pr[1←CPA-Exp<sub>1</sub>( ♣, λ) ]
     = Pr[1 \leftarrow \mathcal{J} \text{ in Hybrid } i]
         - Pr[1← w in Hybrid i-1] ≥ ε/q
```

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

Generalized CPA-security

Therefore, you can use whichever notion you like best

Constructing CPA-secure Encryption

Starting point: stream ciphers = PRG + OTP for multiple messages

Need to synchronize with Bob

Constructing CPA-secure Encryption

Idea 1: Use random position to encrypt

Analysis

As long as the two encryptions never pick the same location, we will have security

Pr[Collision] = ?

Pr[Collision]

Consider event $\mathbf{E}_{j,k} = (\mathbf{i}_j = \mathbf{i}_k)$

$$\Rightarrow$$
 Pr[E_{j,k}] = 1/n

 $Pr[Collision] = Pr[E_{1,2} \text{ or } E_{1,3} \text{ or } ... \text{ or } E_{j,k} \text{ or } ...]$

Union bound:

 $Pr[Collision] \leq \sum_{j,k} Pr[E_{j,k}] = \sum_{j,k} (1/n) = q(q-1)/2n$

Analysis

As long as the two encryptions never pick the same location, we will have security

 $Pr[Collision] < q^2/2n$, where

- q = number of messages encrypted
- **n** = number of blocks

If collision, then no security ("two-time pad")

So we get LoR security, with $\varepsilon' = \varepsilon + q^2/2n$

What if...

The PRG has **exponential** stretch

What if...

The PRG has exponential stretch

AND, it was possible to compute any 1 block of output of the PRG

- In polynomial time
- Without computing the entire output

In other words, given a key, can efficiently compute the function $F(k, x) = G(k)_x$

Functions that "look like" random functions

Syntax:

- Key space K_{λ}
- Domain X_{λ}
- Co-domain/range Y_{λ}
- Function $F:K_{\lambda} \times X_{\lambda} \rightarrow Y_{\lambda}$

Correctness: **F** is a function (deterministic)

PRF Security Definition

Definition: \mathbf{F} is a secure PRF if, for all \mathfrak{P} running in polynomial time, \exists negligible $\mathbf{\varepsilon}$ such that:

$$Pr[1\leftarrow PRF-Exp_{0}(\frac{\lambda}{\lambda},\lambda)]$$

$$-Pr[1\leftarrow PRF-Exp_{1}(\frac{\lambda}{\lambda},\lambda)] \leq \epsilon(\lambda)$$

Using PRFs to Build Encryption

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \mathbf{X}_{\lambda}$
- Compute $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

Correctness:

- y'=y since F is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

Using PRFs to Build Encryption

Security

Theorem: If **F** is a secure PRF with domain X_{λ} and $|X_{\lambda}|$ is superpoly, then (Enc,Dec) is LoR secure.

Assume toward contradiction that there exists a streaking (Enc,Dec)

Hybrids...

b=0 **Hybrid 1:** Challenger $H \leftarrow Funcs(X_{\lambda}, Y_{\lambda})$ $m_0, m_1 \in M_{\lambda}$

Assume toward contradiction that there exists a 🤼 with advantage ε in breaking (Enc, Dec)

- distinguishes Hybrid 0 from Hybrid 3 with advantage ε , so either $\tilde{\mathbb{R}}$
- Dist. Hybrid 0 from Hybrid 1 with adv. ε-q²/4|X|
- Dist. Hybrid 1 from Hybrid 2 with adv. q²/2|X|
- Dist. Hybrid 2 from Hybrid 3 with adv. ε-q²/4|X|

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

Construct 🦄

Suppose 🦹 distinguishes Hybrid 0 from Hybrid 1

- Construct
 PRF-Exp₀(), λ) corresponds to Hybrid 0
- PRF-Exp₁(), λ) corresponds to Hybrid 1

Therefore, has advantage ε-q²/4|X| \Rightarrow contradiction

Suppose Adistinguishes Hybrid 1 from Hybrid 2

Suppose Adistinguishes Hybrid 1 from Hybrid 2

As long as the **r**'s for every query are distinct, the **y**'s for each query will look like truly random strings

In this case, encrypting $\mathbf{m_0}$ vs $\mathbf{m_1}$ will be perfectly indistinguishable

By OTP security

Suppose Table distinguishes Hybrid 1 from Hybrid 2

Therefore, advantage is **≤Pr**[collision in the **r**'s] < q²/2|X|

Suppose Adistinguishes Hybrid 2 from Hybrid 3

Almost identical to the 0/1 case...

Using PRFs to Build Encryption

So far, scheme had fixed-length messages

• Namely, $M_{\lambda} = Y_{\lambda}$

Now suppose we want to handle arbitrary-length messages

Security for Arbitrary-Length Messages

Theorem: Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

Output m = m_1 m_2 ..., m_l
```

Theorem: If (Enc,Dec) is LoR secure, then (Enc',Dec') is LoR secure

Proof (sketch)

Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires $\lambda+1$ bits

⇒ encrypting **l**-bit message requires ≈λ**l** bits

Ideally, ciphertexts would have size ≈λ+l

Solution 1: Add PRG/Stream Cipher

Enc(k, m):

- Choose random r←X
- Compute $y \leftarrow F(k,r)$
- Get $|\mathbf{m}|$ pseudorandom bits $\mathbf{z} \leftarrow \mathbf{G}(\mathbf{y})$
- Compute c←z⊕m
- Output **(r,c)**

Dec(k, (r,c)):

- Compute $y' \leftarrow F(k,r)$
- Compute $z' \leftarrow G(y')$
- Compute and output m'←c⊕z'

Solution 1: Add PRG/Stream Cipher

Solution 2: Counter Mode

Enc(k, m):

- Choose random $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$ Write \mathbf{i} as $\lambda/2$ -bit string
- For **i=1,...,|m|**,
 - Compute $y_i \leftarrow F(k,r||i|)^T$
 - Compute $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where $c=(c_1,...,c_{lml})$

Dec(k, (r,c)):

- For **i=1,...,l**,
 - Compute $y_i \leftarrow F(k,r||i)$
 - Compute $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m₁,...,m_l

Handles any message of length at most $2^{\lambda/2}$

Solution 2: Counter Mode

Summary

PRFs = "random looking" functions

Can be used to build security for arbitrary length/number of messages with stateless scheme

Next time: block ciphers and other "modes" of operation

Reminders

HW2 Due Feb 27th HW3 Due March 5th

PR1 Due March 10th