COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements

HW®6 Due SUNDAY
HW7 Due April 30t

Project 3 will be combined with HW 8, due on Dean’s
date

Project 2 Debrief

Motivation: Cryptocurrencies

|OTA cryptocurrency used P-CURL hash function

e Sponge construction with SPN network
* S-box had bad differentials

* Let to collision-finding attacks

Project 2 Debrief

Absorbing ' Squeezing

_m,
D>

_m,
D>

128 digits base 4

e BE BGE

The Function f

NN DN DN DN D

LD

Each wire is a base 4 number

Good Differentials for ?

-

AxXx— — Ay=0

Aw=0 — — Az

If ((ax,0) , (0,Az)) is a
differential for f, then (Ax,0)
is a differential for H

Constructing Good Differentials

S-box differential has only 1 non-zero digit in both
inputs and outputs
e Called “weight 1” differential

String together to get differential for overall SPN

Don’t care so much about exact differential, any
sequence of weight 1 differentials will do

Attack Sketch:

Choose two random messages that differ in a single
digit, hope that they are collision

Probability of collision 2 %x2-20

* Prob 22-20 input differential gives weight 1 output
differential

* Prob % differing digit will be among first 128 digits

Previously on COS 433...

ldentification Protocols

ldentification

<.
.\)‘ >
<
(i .

ldentification

L

/

Types of Attacks

Direct Attack:

Types of Attacks

Eavesdropping/passive:
&

Types of Attacks

Man-in-the-Middle/Active:

>
>

3 Y

Basic Password Protocol

Never ever (ever ever...) use

:\i sk .

Salting

Let H be a hash function
s; random

Alice SA H(sAlPWdA)

Bob sg H(sgpwdg)
Charlie Sc H(SC,PWdc)

Security Against Eavesdropping

sk=pwd /y/ l"?fk:l-l(s,,,,pwd)
S H(sA,sk) == vKk?

—

|

One-time Passwords

Let F be a PRF

A sk, = F(k,0) \\.,i/
L B
sk=(k,0) &S vk=(k,0)

sk, == F(k,0)?

One-time Passwords

Let F be a PRF

A sk, = F(K,1) \\.,i/
L B
sk=(k,1) &S vk=(k,1)

sk, == F(k,1)?

One-time Passwords

Let F be a PRF
A sko = F(K,0)

/
/

sk=(k,0)

r
S

\

/

One-time Passwords

Let F be a PRF

N sk, = F(k,0) G

[g “f-}\.

sk=(k,1) QQ.Q. l“!kz(k,l)
ot

_J

—

W\

One-time Passwords

Advancing state:

* Time based (e.g. every minute, day, etc)
e User Action (button press)

Must allow for small variation in counter value

* Clocks may be off, user may accidentally press
button

—4 | |

Stateless Schemes?

So far, all schemes secure against eavesdropping are
stateful

Easy theorem: any one-message stateless ID protocol
is insecure if the adversary can eavesdrop

e Simply replay message

If want stateless scheme, instead want at least two
messages

Today

Challenge-Response authentication

Zero Knowledge

Challenge-Response

C-R Using Encryption

Randomr

| ;i}} __ch=Enc(k,r) (@

.’i res % DQC(k Ch) fg..
sk=k \\ & \‘\ vk=k
<N a
C“y/
res==r?

‘Theorem: If (Enc,Dec) is a CPA-secure secure
SKE/PKE scheme, then the C-R protocol is a secret
key/public key identification protocol secure against

__eavesdropping attacks

i “J {(C:ri)} "
| Yy -

C-R Using MACs/Signatures

Randomr
or r T|me

.’i res = MAC(k Ch) fg..
sk=k \\ “’ vk=K
%(k ch,res)?

/Theorem: If (MAC,Ver) is a CMA-secure secure
MAC/Signature scheme, then the C-R protocol is a
secret key/public key identification protocol secure

__against eavesdropping attacks

Active Attacks

A
viv

A
viv

A
viv
r
| =

Active Attacks

For enc-based C-R, CPA-secure is insufficient
* Instead need CCA-security (lunch-time sufficient)

For MAC/Sig-based C-R, CMA-security is sufficient

Non-Repudiation

Consider signature-based C-R

) r =Time
‘J;‘ . Ch=r \@
) res = Sig(vk,ch) Ga=
I BN vk=pk

\nc{):

Bob can prove to police that
Alice passed identification

/ero Knowledge

What if Bob could have come up with a valid

transcript, without ever interacting with Alice?

* Then Bob cannot prove to police that Alice
authenticated

Seems impossible:
* If (public) vK is sufficient to come up with valid
transcript, why can’t an adversary do the same?

/ero Knowledge

Adversary CAN come up with valid transcripts, but
Bob doesn’t accept transcripts
* Instead, accepts interactions

Ex: public key Enc-based C-R

e Valid transcript: (c,r) where ¢ encrypts r

* Anyone can come up with a valid transcript

* However, only Alice can generate the transcript for
a given €

Takeaway: order of messages matters

Zero Knowledge Proofs

Mathematical Proof

Ver(m)

Mathematical Proof

Statement X

W;tness w

Interactive Proof

Statement X

W'}tness w

\

-

2

Properties of Interactive Proofs

Let (P,V) be a pair of probabilistic interactive
algorithms for the proof system

Completeness: If w is a valid witness for X, then V
should always accept

Soundness: If X is false, then no cheating prover can
cause V to accept

* Perfect: accept with probability O

e Statistical: accept with negligible probability
 Computational: cheating prover is comp. bounded

/ero Knowledge

Intuition: verifier doesn’t learn anything by engaging
in the protocol (other than the truthfulness of x)

How to characterize what adversary “knows”?

* Only outputs a bit

* May “know” witness, but hidden inside the
programs state

/ero Knowledge

First Attempt:

3 “simulator” %ﬁ s.t. for every true statement X,
valid witness w,

Mx) = c Pxw) — V(x)

/ero Knowledge

First Attempt:

Assumes Bob obeys protocol
* “Honest Verifier”

But what if Bob deviates from specified prover
algorithm to try and learn more about the witness?

/ero Knowledge

For every malicious verifier V¥*, 3 “simulator” .433
s.t. for every true statement X, valid witness w,

M) R PxwW) — V)

QR Protocol

Statements: X is a Q.R. mod N
Witness: ws.t. wé mod N = X

Protocol: W
u€z)” e
y€u? mod N i - @ befo)
i-wbu mod N N“‘"

1

z2==x’y mod N?

QR Protocol

Zero Knowledge:

What does Bob see?

* Arandom QRYY,

A random bit b,

* A random root of xby

Idea: simulator chooses b, then v,
* Can choose Yy s.t. it always knows a square root of
XPy

QR Protocol

Honest Verifier Zero Knowledge:

* IfXisaQR,thenyisarandom
./;ﬁ (x):

_ QR, no matter what b is
* Choose arandombitb . zisa square root of xby

* Choose a random string 2
°lety = X-bz?2 1

* Output (y,b,z) (y,b,2) is distributed

identically to (P,V)(x)

QR Protocol

(Malicious Verifier) Zero Knowledge:

QR Protocol

(Malicious Verifier) Zero Knowledge:

Proof:

* If X is a QR, then y is a random QR, independent of
bl

* Conditioned on b’=b, then (y,b,z) is identical to
random transcript seen by V*

* b’=b with probability 1/2

Repetition and Zero Knowledge

(sequential) repetition also preserves ZK

Unfortunately, parallel repetition might not:
4 4
* 8 makes guesses by’,b,’, ...
* Generates valid transcript only if all guesses were
correct
* Probability of correct guess: 2-1

Maybe other simulators will work?
* Known to be impossible in general, but nothing
known for QR

/ero Knowledge Proofs

Known:
* Proofs for any NP statement assuming statistically-
binding commitments

* Non-interactive ZK proofs for any NP statement
using trapdoor permutations

Proofs of Knowledge

Sometimes, not enough to prove that statement is
true, also want to prove “knowledge” of witness

EX:

* |dentification protocols: prove knowledge of key
* Discrete log: always exists, but want to prove
knowledge of exponent.

Proofs of Knowledge

We won’t formally define, but here’s the intuition:

Given any (potentially malicious) PPT prover P* that
causes V to accept, it is possible to “extract” from P*
a withess W

Schnorr PoK for DLog

Statement: (g,h)
Witness: w s.t. h=g"

Protocol:

7 W
r<& ¢
P 3} a “/‘,::;\

~ - W b€,

a<q" 3 4 b A
.) C=r+wb e

as

axh® == g°?

Schnorr PoK for DLog

Completeness:
° gC - gr'l'Wb - axhb

Honest Verifier ZK:

* Transcript = (a,b,c) where a=g¢/hP and (b,c)
random in ZP

e Can easily simulate. How?

Schnorr PoK for DLog

Proof of Knowledge?

Idea: once Alice commits to a=g", show must be able
to compute ¢ = r+bw for any b of Bob’s choosing

* Intuition: only way to do this is to know w
* Run Alice on two challenges, obtain:
Co=Tro+bywc,=r,+b w
(Can solve linear equations to find w)

Deniability

Zero Knowledge proofs provide deniability:

* Alice proves statement X is true to Bob

* Bob goes to Charlie, and tries to prove X by
providing transcript

* Charlie not convinced, as Bob could have generated
transcript himself

 Alice can later deny that she knows proof of X

> Protocols

(fancy name for 3-round “public coin” protocols)

Fiat-Shamir Transform

Idea: set b = H(a)
 Since H is a random oracle, a is a random output

Notice: now prover can compute b for themselves!
* No need to actually perform interaction

W
«} ooy 3
£~ a,b=H(a),c ‘®

‘Theorem: If (PV) was a secure ZKPoK for honest)

verifiers, and if H is a random oracle, then compiled
\protocol is a ZKPoK

Proof idea: second message is exactly what you'd
expect in original protocol

Complication: adversary can query H to learn second
message, and throw it out if she doesn’t like it

Signatures from > Protocols

Idea: what if setb = H(m,a)
* Challenge b is message specific

* Intuition: proves that someone who knows sk
engaged in protocol depending on m

e Can use resulting transcript as signature on m

Schnorr PoK = Schnorr Signatures

Applications of ZK (PoK)

|dentification protocols: prove that you know the secret
without revealing the secret

Signatures: prove that you know the secret in a “message
dependent” way

Protocol Design:
* E.g. CCA secure PKE

* To avoid mauling attacks, provide ZK proof that ciphertext is
well formed
* Problem: ZK proof might be malleable
e With a bit more work, can be made CCA secure
* Example: multiparty computation
* Prove that everyone behaved correctly

Announcements

HW®6 Due SUNDAY
HW7 Due April 30t

Project 3 will be combined with HW 8, due on Dean’s
date

