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Integer Factorization



Integer Factorization

Given an integer N, find it’s prime factors

Studied for centuries, presumed difficult
* Grade school algorithm: O(N/2)
* Better algorithms using birthday paradox: O(N*)
* Even better assuming G. Riemann Hyp.: O(N*)
* Still better heuristic algorithms:
exp( C (log N)'/3 (log log N)2/3 )
* However, all require super-polynomial time in bit-
length of N



/Factoring Assumption: For any factoring algorithm A
i running in polynomial time, 3 negligible € such
that:

Pri(p.q)< K (N):

N=Pq . .
N P,q €<random A-bit primes] < &(A) Y,




Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let XxE %y, YELg

Then there exists a unique integer Z&€ Zy, such that
* X = Z mod p, and
Yy =2 mod q

Proof: z = [py(p! mod q)+qx(q! mod p)] mod N



Quadratic Residues

T . . . . D
Definition: Yy is a quadratic residue mod N if there
exists an X such thaty = x2 mod N. x is called a
“square root” of y

N Y

EX:
* Let p be a prime, and y#£0 a quadratic residue mod
p. How many square roots of y?

* Let N=pq be the product of two primes, y a
quadratic residue mod N. Suppose y#0 mod p
and y#0 mod q. How many square roots?



/QR Assumption: For any algorithm i running in \
polynomial time, = negligible € such that:

Prly2=x2 mod N:

y€ K (N,x2)
N=pq, p,q€random A-bit primes
X &y ] < €(A)

(& /




This Time

Factoring continued

Public key cryptography



Theorem: If the factoring assumption holds, then
the QR assumption holds




Proof

To factor N:

* X<y

* y€ f(N,x?)

* Output GCD(x-y,N)

Analysis:

* Let {a,b,c,d} be the 4 square roots of x2

. i has no idea which one you chose

* With probability %, y will not be in {+x,-x}

* In this case, we know x=y mod p but x=-y mod q



Collision Resistance from
Factoring

Let N=pq, y a QR mod N
Suppose =1 isnota QR mod N

Hashing key: (N,y)
Domain: {1, ...,(N-1)/2}x{0,1}
Range: {1,...,(N-1)/2}

H( (N,y), (x,b) ): Letz = y*°x2 mod N
. If z€{],...,(N-1)/2}, output 2
* Else, output -z mod N €{1,...,(N-1)/2}



Theorem: If the factoring assumption holds, H is
collision resistant

Proof:
* Collision means (X,,bo)#(X;,b;) s.t.
ye0 Xo? = + y®! x;2 mod N

e |f b0=bl' then thxl, but X02=iX12 mOd N
* Xo2=-X,2 mod N not possible. Why?
° XO¢-XI SinCe XO,XIE{I,...,(N-I)/Z}

o |f boibl, then (Xo/xl)z - mOd N
* -y case not possible. Why?
* (Xo/%,) or (x,/X,) is a square root of y



Choosing N

How to choose N so that -1 is not a QR?

By CRT, need to choose p,q such that -1 is not a QR
mod p or mod q

Fact: if p = 3 mod 4, then -1is not a QR mod p
Fact:if p = 1 mod 4, then -1isa QR mod p



s Composite N Necessary for SQ
to be hard?

Let p be a prime, and suppose p = 3 mod 4
Given a QR x mod p, how to compute square root?

Hint: recall Fermat: xP-!=1 mod p for all x#0

Hint: what is x(P*1)/2 mod p?



Solving Quadratic Equations

In general, solving quadratic equations is:

* Easy over prime moduli

* As hard as factoring over composite moduli



Other Powers?

What about X = x4 mod N? x =2 x® mod N?

The function X 2 x3 mod N appears quite different
* Suppose 3 is relatively prime to p-1 and q-1

* Then X = x3 mod p is injective for x£0
* Let @ be such that 3a = 1 mod p-1
* (x3)a = x1+k(P-1) = x(xP-1)k = x mod p

* By CRT, x = x3 mod N is injective for XEZy"



x3 mod N

What does injectivity mean?

Cannot base of factoring:
Adapt alg for square roots?
e Choose arandom z mod N
* Computey = z3 mod N
* Run inverter on Yy to get a cube root X

* Letp = GCD(z-x, N), q = N/p



RSA Problem

Given

*N = pq,
* e such that GCD(e,p-1)=GCD(e,q-1)=1,
e v=x¢ mod N for a random X

Find X

Injectivity means cannot base hardness on factoring,
but still conjectured to be hard



/RSA Assumption: For any algorithm i running in \
polynomial time, , 3 negligible € such that:

Pr[xéi(N,x3 mod N)
N=pq and p,q random A-bit primes s.t.
GCD(3,p-1)=GCD(3,q9-1)=1
Xx€Zy ] < ()

(& /




Application: PRGs

Let F(x) = x3 mod N, h(x) = least significant bit

)(—-»F—»

1L

q

Theorem: If RSA Assumption holds, then
G(x) = ( F(x), h(x) ) is a secure PRG




Public Key Cryptography



How do Alice & Bob get K?




Limitations

Time consuming
Not realistic in many situations
* Do you really want to send a courier to every

website you want to communicate with

Doesn’t scale well
* Imagine 1M people communicating with 1M people

If not meeting in person, need to trust courier



Public Key Distribution




Public Key Distribution
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Public Key Distribution




Public Key Distribution




Interactive Protocols

Pair of interactive (randomized) algorithms A, B

A(x) (- - B(y)
l Transcript Trans
OA OB

Write (Trans,0,,0s) €< (A,B)(x,Yy)



Public Key Distribution

Pair of interactive algorithms A,B

Correctness:
Prlo,=05: (Trans,0,,05)<(A,B)()] = 1

Shared key is K := 0,=04
* Define (Trans, k)< (A,B)()

Security: (Trans,K) is computationally

indistinguishable from (Trans,k’) where k' €K
independent of K



Matrix Multiplication Approach

BEZ M
A€B!



Matrix Multiplication Approach

A B
BEZ M




Matrix Multiplication Approach

@ B
§—

BEZ M

A€B!




Matrix Multiplication Approach




Running Times?

Bob: O(A2)
Eve: O(A3)



Running Times?

Bob: O(A2)
Eve: O(A®) where w<2.373
Alice: O(Av)

Different Approach:

e Start withA =B =1

* Repeatedly apply random elementary row ops to A,
inverse to B

e Output (A,B)



Running Times?

Bob: O(A2)
Eve: O(A®) where w<2.373

Alice: O(A*)

s N
Assuming Matrix Multiplication exponent w > 2,
adversary must work harder than honest users

[ J

inverseto B
e Output (A,B)




Merkle Puzzles

Let H be some hash function with domain [A]=£1, ...,A}

{Ai} {Bi} ol
. L\

a,,...,a,<[A) by,...,.b, €[A]
A, € H(a) b, € H(b)



Merkle Puzzles

Let H be some hash function with domain [A]=£1, ...,A}

a A} {B:}

X, " £ 2
D av
a0 ] by, ...,b, &[A]
A. € H(a) b, < H(b)

1

ai S.t. A|E{B|} bi S.t. B|E{A|}



Analysis

Protocol succeeds iff:
* H is injective (why?)

« {A}n{B;}#2 (equiv, {a;}n{b;}#2)
What does t need to be to make {A;}n{B;}#2 ?

If adversary can only query H on various inputs, how
many queries needed?



Limitations

Both matrix multiplication and Merkle puzzle
approaches have a polynomial gap between honest
users and adversaries

To make impossible for extremely powerful

adversaries, need at least A2 » 280

* Special-purpose hardware means A needs to be
even bigger

* Honest users require time at least A=240

* Possible, but expensive



Limitations

Instead, want want a super-polynomial gap between
honest users and adversary
* Just like everything else we’ve seen in the course



Key Distribution from Obfuscation

Software obfuscation:

* Compile programs into unreadable form
(intentionally)

@P=split//," .URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona tsuJ";sub p{
€p{"rs$p","usp"}=(P,P);pipe"r$p", "usp" ; ++$p; ($q*=2)+=$f=1fork;map{$P=$P[$£f "ord
(Sp{$_})&6];$p{$_)}=/ "$P/ix?$P:close$_}keysi¥p}p;p;pP;pP;p;map{Sp{$_}=~/"[P.]/&&
close$ }%p;wait until$?;map{/ "r/&&<$ >}%p;$ =$d[$qg);sleep rand(2)if/\S/;print



Key Distribution from Obfuscation

Let F,F-! be a block cipher

5 P
: >

)
/

ké{o,;}"
P<ODbf( F(k, -) )




Key Distribution from Obfuscation

Let F,F-! be a block cipher

N
< X

ké{o,;}" r<{o,1}*
P<Obf( F(k, -) ) x<P(r)




Key Distribution from Obfuscation

Let F,F-! be a block cipher

un P »
g X
3 ,
k<{0,1}* r<{o,1}*
P&Obf( F(k, -) ) x<P(r)
} }
r&<F-i(k,x) r



Key Distribution From Obfuscation

For decades, many attempts at commercial code

obfuscators
e Simple operations like variable renaming, removing

whitespace, re-ordering operations

Really only a “speed bump” to determined adversaries
* Possible to recover something close to original
program (including cryptographic keys)

4 )

Don’t use commercially available obfuscators to
hide cryptographic keys!




Key Distribution From Obfuscation

Recently (2013), new type of obfuscator has been

developed

* Much stronger security guarantees

* Based on mathematical tools

* Many cryptographic applications beyond public key
distribution

Downside?
e Extraordinarily impractical (currently)



Practical Key Exchange

Instead of obfuscating a general PRP, we will define a
specific abstraction that will enable key agreement

Then, we will show how to implement the
abstraction using number theory



Trapdoor Permutations

Domain X

Gen(): outputs (pk,sk)
F(PK,XEX) = yeX
F-i(sk,y) = x

Correctness:

Pr[ F-i(sk, F(pk, x)) = x : (pk,sk)<Gen() ] =1

Correctness implies F,F-! are deterministic,
permutations



Trapdoor Permutation Security

-y (sk,pk)€<Gen()
D pky x€ X
N\ y<F(pk,x)
x’ Adversary wins if x=x’

In other words, F(pK, - ) is a one-way function



Key Distribution from TDPs

(pk,sk)<Gen()
K
A P - G x€X
./_S ) y<F(pk,x) fg...
F A\



Analysis

Correctness follows from correctness of TDP

Security:
e By TDP security, adversary cannot compute X
* However, X is distinguishable from a random key



Hardcore Bits

Let F be a one-way function with domain D, range R

/Definition: A function h:D%{O,!} is a hardcore bit

for F if, for any polynomial time *., T negligible €
such that:
| Pr1€ ® (F(x), h(x)), x€D]
= Prl1€ #(F(x), b), x€Db<{0,1}] | < (1) |

~

In other words, even given F(x), hard to guess h(x)



Examples of Hardcore Bits

Define Isb(X) as the least significant bit of X

For x € Z,,, define Half(x) as 1 iff 0¢x<N/2



" Theorem: Let p be a prime, and F:Z,>Z," be
F(g,x) = (9,9 mod p)
Half is a hardcore bit for F (assume F is one-way)
-

/Theorem: Let N be a product of two large primes p,q,

and F:Z,,">Z," be F(x) = x¢ mod N for some e
relatively prime to (p-1)(q-1)

)
~

kLSb and Half are hardcore bits for F (assuming RSA)

(Theorem: Let N be a product of two large primes p,q,
and F:Z,, >Z," be F(x) = x2 mod N

/
\

Lsb and Half are hardcore bits for F (assuming
Q‘actormg) y




Key Distribution from TDPs

(pk,sk)<Gen()
B Pk .
‘/S ) y <F(pk,x) rr;f/ XX
ty ‘?’
x<h( Fi(sk,y) ) h( x )

h a hardcore bit for F(pk, - )



/Theorem: If his a hardcore bit for

F(pk, . ), then protocol is secure
-

Proof:

* (Trans,k) = ( (pk,y), h(x))
* Hardcore bit means indist. from ( (pk,y), b)



Trapdoor Permutations from RSA

Gen():

* Choose random primes p,q

* Let N:pq

* Choose e,d .s.t ed=1 mod (p-1)(q-1)
» Output pk=(N,e), sk=(N,d)

F(pk,x): Outputy = x® mod N

F-1(sk,c): Outputx = y4 mod N



Caveats

RSA is not a true TDP as defined
e Why???
e What’s the domain?

Nonetheless, distinction is not crucial to most

applications
* In particular, works for key agreement protocol



Other TDPs?

For long time, essentially none known

* Still interesting object:
* Useful abstraction in protocol design
* Maybe more will be discovered...

Using obfuscation:
* Let P be a PRP
sk = k, pk = Obf( P(k, - ) )



Key Distribution from DH

Everyone agrees on group G of prime order p
; 3 “/',t:*?\
a<Z, ) G f)s b&Z,

. BN



Key Distribution from DH

Everyone agrees on group G or prime order p

. s (@
aéZP ¢ .@2 béZID

v



Key Distribution from DH

Everyone agrees on group G or prime order p

g g°

a< ZP ’ C@s b& ZP

as

| |

k = (gb)a - gab k = (ga)b - gab



Key Distribution from DH

‘Theorem: If (t,€)-DDH holds on G, then the Diffie-

Hellman protocol is (t,€)-secure
-

Proof:

* (Trans k) = ( (g°g°), g*°)
 DDH means indistinguishable from ( (g%,g®), g¢)

What if only CDH holds, but DDH is easy?



Public Key Encryption




Public Key Encryption




Public Key Encryption




Public Key Encryption

pK
) < Sk
c<Enc(pk,m) oM
L\

m mé<&Dec(sk,c)



Public Key Encryption

(@ sk
€0

BN

mé€&Dec(sk,c)

v




PKE vs Key Agreement

Key agreement:
o




PKE vs Key Agreement

Key agreement:
2




PKE vs Key Agreement

Key agreement:
o




PKE vs Key Agreement

Key agreement:

For n users,
need O(n?) key
exchanges



PKE vs Key Agreement

PKE:




PKE vs Key Agreement

PKE:




PKE vs Key Agreement

PKE:

£ 2
(=

L

For n users,
need O(n)
public keys



PKE Syntax

Message space M

Algorithms:

* (sk,pk)<Gen(A)
* Enc(pk,m)

* Dec(sk,m)

Correctness:

Pr[Dec(sk,Enc(pk,m)) = m: (sk,pk)<Gen(A)] = 1



Security

One-way security
Semantic Security
CPA security

CCA Security



One-way Security

(sk,pk)<Gen()
. m<M
W c<Enc(pk,m)




Semantic Security

v J . pk (sk,pk)<Gen()
D
N - \ 'T‘o'"‘]‘_>

c<Enc(pk,m,)




CPA Security

(sk,pk)<Gen()

c<Enc(pk,m,)




CCA Security

. JC m (sk,pk)<Gen()
— Moy
A ¢ c€<Enc(pk,m,)
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