COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2020

Announcements

HW4 Due April 2nd

Mark’s OH = Fridays 11am (Eastern)

Previously on COS 433...

Authenticated Encryption

Authenticated Encryption

attackatdawn
A A
) > ~ > (i -‘@E
S a \‘ “ K
K attackatdusk

Goal: Eve cannot learn nor change plaintext
e Authenticated Encryption will satisfy two security
properties

Syntax

Syntax:
*Enc: KxM - C
* Dec: KxC > MU {1}

Correctness:
* ForallkEK, meEM,
Pr[Dec(k, Enc(k,m)) =m] =1

Unforgeability

o | MEM .
>
N\ o

K € K,

¢ € Enc(k,m,)

Output 1 iff:
. c*¢{c,,...}
» Dec(k,c*) # L

‘Definition: An encryption scheme (Enc,Dec) is an
authenticated encryption scheme if it is
unforgeable and CPA secure

"

Today

Authenticated encryption, continued

Hash functions

Constructing Authenticated
Encryption

Three possible generic constructions:

1. MAC-then-Encrypt (SSL) NAC(kMAC, m)

________m o
K = (kErIC'kMAC) l ! '
: & EnC(kEnc: (mlc))
. c
¥ Dec(ke,., €)

I

Ver(kyac, M, o)

)

Accept Reject

Constructing Authenticated
Encryption

Three possible generic constructions:

2. Encrypt-then-MAC (IPsec)

. m
K = (Kene:Kmac) ¥ Enc(kg,., M)
_Cc _____ omN-

_/7'
MAC(Kuwac €°)

Constructing Authenticated
Encryption

Three possible generic constructions:

3. Encrypt-and-MAC (SSH)
MAC(Kmac, M)

K = (kEnCIkMAC) ‘Enc(kEnc' "ﬂ‘

+c

Constructing Authenticated
Encryption

1. MAC-then-Encrypt
2. Encrypt-then-MAC

3. Encrypt-and-MAC

Which one(s) always provides authenticated
encryption (assuming strongly secure MAC)?

Constructing Authenticated
Encryption

1. MAC-then-Encrypt X
2. Encrypt-then-MAC v

3. Encrypt-and-MAC X

Which one(s) always provides authenticated
encryption (assuming strongly secure MAC)?

Constructing Authenticated
Encryption

MAC-then-Encrypt?
* Encryption not guaranteed to provide
authentication
* May be able to modify ciphertext to create a new
ciphertext
« Toy example: Enc(k,m) = (0,Enc’(k,m))
Dec(k, (b,c)) = Dec’(k,c)

X

Constructing Authenticated
Encryption

Encrypt-then-MAC?

* Inner encryption scheme guarantees secrecy,
regardless of what MAC does

* (strongly secure) MAC provides integrity, regardless
of what encryption scheme does

Theorem: Encrypt-then-MAC is an authenticated
encryption scheme for any CPA-secure encryption
\scheme and strongly CMA-secure MAC

v

Constructing Authenticated
Encryption

Encrypt-and-MAC?
* MAC not guaranteed to provide secrecy
* Even though message is encrypted, MAC may

reveal info about message
* Toy example: MAC(k,m) = (m,MAC’(k,m))

X

Constructing Authenticated
Encryption

1. MAC-then-Encrypt X
2. Encrypt-then-MAC v

3. Encrypt-and-MAC X

Which one(s) always provides authenticated
encryption (assuming strongly secure MAC)?

Constructing Authenticated
Encryption
Just because MAC-then-Encrypt and Encrypt-and-

MAC are insecure for some MACs/encryption
schemes, they may be secure in some settings

Ex: MAC-then-Encrypt with CTR or CBC encryption
* For CTR, any one-time MAC is actually sufficient

Theorem: MAC-then-Encrypt with any one-time
MAC and CTR-mode encryption is an authenticated

\encryption scheme

Chosen Ciphertext Attacks

Chosen Ciphertext Attacks

Often, adversary can fool server into decrypting
certain ciphertexts

Even if adversary only learns partial information (e.g.
whether ciphertext decrypted successfully), can use
info to decrypt entire message

Therefore, want security even if adversary can mount
decryption queries

Chosen Plaintext Security

b

1 Kk € K
C C" c ¢ € Enc(k,m)
@ my, M,
1\ c” ‘ ¢ € Enc(k,m,)

| C" = T e € Enc(k,m)
b

Chosen Ciphertext Security?

'1’ k € K
m
) c ¢ € Enc(k,m)
C
o J (. m m € Dec(k,c)
.’ m % m %
3 \ 0/ 1 o* c*<Enc(k,m,*)
m >
I c

Lunch-time CCA (CCA1)
b

1 k € K
m
) c ¢ € Enc(k,m)
C
o J (. m m € Dec(k,c)
" m,*, m,* * e
1\ c* c*<Enc(k,m,*)
m

Full CCA (CCA2)

1 k € K
m
) c ¢ € Enc(k,m)
C
o J (. m m € Dec(k,c)
.’ m % m %
1 \ O c*<Enc(k,m,*)

Theorem: If (Enc,Dec) is an authenticated
encryption scheme, then it is also CCA secure

Proof Sketch

For any decryption query, two cases

1. Was the result of a CPA query
* In this case, we know the answer already!

2. Was not the result of an encryption query
* In this case, we have a ciphertext forgery

Collision Resistant Hashing

Expanding Message Length for MACs

Suppose we have a MAC (MAC,Ver) that works for
small messages (e.g. 256 bits)

How can | build a MAC that works for large
messages?

One approach:
* MAC blockwise + extra steps to insure integrity
* Problem: extremely long tags

Hash Functions

Let h:§0,1}! > {0,1}" be a function, n << |

MAC'(k,m) = MAC(k, h(m))
Ver’(k,m,c) = Ver(k, h(m), o)

Correctness is straightforward
Security?

* Pigeonhole principle: Imyzm, s.t. h(my)=h(m,)
* But, hopefully such collisions are hard to find

Collision Resistant Hashing?

Syntax:

* Domain D (typically {0,1}' or {0,1}*)
* Range R (typically §0,1}")

* FunctionH: D 2 R

Correctness: n << |

Security?

~

/Definition: H is collision resistant if, for all §
running in polynomial time, 3 negligible € such
that:

PriH(x,) = H(x,) A X #x,: (xo,xl)é,%()] < ()
\ /

Problem?

Theory vs Practice

In practice, the existence of an algorithm with a built
in collision isn’t much of a concern
 Collisions are hard to find, after all

However, it presents a problem with our definitions
* So theorists change the definition
 Alternate def. will also be useful later

Collision Resistant Hashing

Syntax:

* Key space K (typically §0,1}*)

» Domain D (typically §{0,1} or {0,1}*)
» Range R (typically §{0,1}")

* FunctionH: K x D 2 R

Correctness: n << |

Security

/Definition: H is collision resistant if, for all §
running in polynomial time, = negligible € such
that:
PriH(k,x,) = H(K,x,) A X #X;:
(%o x))€ §(K)KEK] < £(0)

_

~

)

Collision Resistance and MACs

Let h(m) = H(k,m) for a random choice of k

MAC (Kuacsm) = MAC(Kuac, (M)
Ver'(kMAc,m,O') - Vel‘(kMAC, h(m), 0)

Think of kK as part of key for MAC’

Theorem: If (MAC,Ver) is CMA-secure and H is
collision resistant, then (MAC’,Ver’) is CMA secure

Proof

Hybrid O

Ky € Ky
Kmac € Kuac

' \ fi & H(k,_,,mi)
et | GéMAC(kMAC, 1'|)

Output 1 iff:

l- m*¢{m,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

Hybrid 1

Ky € Ky
Kmac € Kuac

t. < H(k,,m,)
UéMAC(kMAC’ 1'|)

Output 1 iff:

L t*¢{t,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

In Hybrid 1, negligible advantage using MAC security

Iif £ forges with t*¢{t,,...}, then %’also forges

Proof

If ® succeeds in Hybrid 0 but not Hybrid 1, then
« m*¢{m,,...}
* But, t*€{t,,...}

Suppose t* = t,

Then (m;,m*) is a collision for H(k, -)
 Straightforward to construct collision finder

Constructing Hash Functions

Domain Extension

Goal: given h that compresses small inputs, construct
H that compresses large inputs

Shows that even compressing by a single bit is
enough to compress by arbitrarily many bits

Useful in practice: build hash functions for arbitrary
inputs from hash functions with fixed input lengths
 Called compression functions

e Easier to design

Merkle-Damgard

‘Theorem: If an adversary knows a collision for fixed-

length Merkle-Damgard, it can also compute a collision
for h

-

I

I

Collision OR
- me 1'5=1"5)

ts
Collision OR
(m4=m'4 AND

‘|'4=‘|"4)

Collision OR
1.3=""3)

Collision OR
- m, B M, 1'2=1"2)

Proof

1V .|.2

(fixed)

Collision OR
m1=m'1

But, if mlzm'l, then m=m’
IV t,

(fixed)

Merkle-Damgard

So far, assumed both inputs in collision has to have
the same length

As described, cannot prove Merkle-Damgard is
secure if inputs are allowed to have different length
 What if adversary knows an input X such that

h(x|lIV) = IV?

Need proper padding to enable security proof
* Ex: append message length to end of message

Constructing h

Common approach: use block cipher

Davies-Meyer

7
y —b F h(x,y)=xeF(y,x)

Constructing h

Some other possibilities are insecure
X
}
y —t F > h(x,y)=F(y,x)

}
y 1> F —€F—> h(x,y)=F(y,x)ey

Constructing h

SR
y —> F —@®— h(x,y)=xF(y,x)

Why do we think Davies-Meyer is reasonable?

e Cannot prove collision resistance just based on F
being a secure PRP

Instead, can argue security in “ideal cipher” model

* Pretend F, for each key v, is a uniform random
permutation

We said 128 bit security is usually enough

Why is a block cipher with 128-bit blocks
insufficient?

Birthday Attack

If the range of a hash function is R, a collision can be
found in time T=O(IR|*)

Attack:
* Given key K for H
* Fori=l,.., T,
* Choose random X;in D
* Let +,€H(k,x;)
* Store pair (x;, 1)
* Look for collision amongst stored pairs

Birthday Attack

Analysis:

Expected number of collisions

= Number of pairs x Prob each pair is collision
~ (T choose 2) x 1/|R|

By setting T=O(IR|*), expectend number of
collisions found is at least 1

= likely to find a collision

Birthday Attack

Space?

Possible to reduce memory requirements to O(1)

Sponge Construction

Absorbing ' Squeezing

Sponge Construction

Advantages:
* Round function f can be public invertible function
(i.e. unkeyed SPN network)

* Easily get different input/output lengths

SHA-1,2,3

SHA-1,2 are hash functions built as follows:

 Build block cipher (SHACAL-1, SHACAL-2)

e Convert into compression function using Davies-
Meyer

e Extend to arbitrary lengths using Merkle-Damgard

SHA-3 is based on sponge construction

SHA-1,2,3

SHA-1 (1995) is no longer considered secure

* 160-bit outputs, so collisions in time 23°

* 2017: using some improvements over birthday
attack, able to find a collision

SHA-2 (2001)
* Longer output lengths (256-bit, 512-bit)
 Few theoretical weaknesses known

SHA-3 (2015)
 NIST wanted hash function built on different
principles

Basing MACs on Hash Functions

Idea: MAC(K,m) = H(k || m)

Thought: if His a “good” hash function and K is
random, should be hard to predict H(k || m)
without knowing k

Unfortunately, cannot prove secure based on just
collision resistance of H

Random QOracle Model

Pretend H is a truly random function

Everyone can query H on inputs of their choice
e Any protocol using H

* The adversary (since he knows the key)

A query to H has a time cost of 1

Intuitively captures adversaries that simple query H,
but don’t take advantage of any structure

MAC In ROM

MACH(k,m) = H(klIm)
Vert(k,m,c) = (H(kllm) == o)

Theorem: H(k || m) isa(t, q, qt/2")-CMA-secure
MAC in the random oracle model

Meaning
H&Funces

Output 1 iff:
* m*¢{m,,...}
» Vert(k,m*,0%*)=1

Meaning

H<Funcs

Proof Idea

Value of H(kllm*) independent of adversary’s view
unless she queries H on K|lm*

* Only way to forge better than random guessing is to
learn K

Adversary only sees truly rand and indep H values
and MACs, unless she queries H on Kllm; for some i
* Only way to learn k is to query H on Kl|Im,

However, this is very unlikely without knowing K in
the first place

The ROM

A random oracle is a good

 PRF: F(k,x) = H(k||x)

* PRG (assuming H is expanding):
* Given a random X, H(x) is pseudorandom since adv is
unlikely to query H on X

* CRHF:

* Given poly-many queries, unlikely for find two that map
to same output

The ROM

The ROM is very different from security properties
like collision resistant

What does it mean that “Sha-1 behaves like a
random oracle”?
* No satisfactory definition

Therefore, a ROM proof is a heuristic argument for

security

* If insecure, adversary must be taking advantage of
structural weaknesses in H

When the ROM Fails

MACH(k,m) = H(klIm)
Vert(k,m,c) = (H(kllm) == o)

Instantiate with Merkle-Damgard (variable length)?

o Lo Lo Lo L
e e

(fixed)

When the ROM Fails

ROM does not apply to regular Merkle-Damgard
* Even if h is an ideal hash function

Takeaway: be careful about using ROM for non-

“monolithic” hash functions

* Though still possible to pad MD in a way that makes
it an ideal hash function if h is ideal

HMAC

HMAC

ipad,opad?
* Two different (but related) keys for hash and MAC

* ipad makes hash a “secret key” hash function

* Even if not collision resistant, maybe still impossible
to find collisions when hash key is secret

 Turned out to be useful after collisions found in
MD5

