
COS 433: Cryptography Princeton University
Homework 7 Due: April 30, 2020, 11:59pm EST

Homework 7

1 Problem 1 (10 points)

Recall that in the ElGamal cryptosystem, the public key is a pair (g, h) where g is a
generator for a group G of prime order, and h = ga where a ∈ Zp is the secret key.
To encrypt a message m ∈ G, choose a random r and output (gr, hr ×m).

(a) Suppose you have two ElGamal ciphertexts c0, c1 encrypting m0 and m1, re-
spectively, where m0,m1 are unknown. Show how to devise a new ElGamal
ciphertext c2 which encrypts m0 × m1. You only know the public key and
the ciphertexts; you do not know m0,m1, the secret decryption key a, or the
encryption randomness.

Thus, ElGamal is multiplicatively homomorphic: given two ciphertexts, it is
possible to devise a new ciphertext that encrypts the product of the two plain-
texts knowing just the public key.

(b) Let c be an ElGamal ciphertext encrypting an unknown message m. Show how
to devise another ElGamal ciphertext c′ encrypting m. c′ should look like a fresh
random ciphertext: its distribution should be the same as if you encrypted m
from scratch, and should be independent of c (except that it encrypts the same
message). As before, you know only the public key and the ciphertext; you do
not know m, a, or the encryption randomness.

Thus, ElGamal is re-randomizeable, meaning you can take a ciphertext, and
produce a fresh looking ciphertext that encrypts the same message.

2 Problem 2 (15 points)

Here, you will show that computing discrete logs mod a composite integer N = pq
is as hard as factoring N . In other words, you are given an algorithm A such that
given g, h ∈ Z∗N , A efficiently computes an integer x such that gx mod N = h. (Note
that in general Z∗N is not cyclic, so the discrete log is not guaranteed to exist. The
algorithm for discrete logs is only guaranteed to work when the discrete log exists).
You may assume A finds a discrete log with probability 1 when it exists; there is no
guarantee that the x outputted by A will lie in any particular range. Show that given
A, you can factor N .

1



To help you, here are some hints:

• Consider running A(g, gy) for a random g ∈ Z∗N , and where y is uniform in
[0, 2N ]. Let x be the output of A. Show that y 6= x with noticeable probability,
no matter what A does.

• When x 6= y, what relationship must x and y satisfy?

• Can you extend the above to compute the order of g, for any g ∈ ZN∗. Consider
running A several times on the same g but different h’s.

• Finally, if you could compute the order for any g ∈ Z∗N , how does this let you
factor N?

3 Problem 3 (5 points)

Let H : Kλ×{0, 1}m(λ) → {0, 1}n(λ) be a (keyed) hash function. Assume H is collision
resistant. Suppose m(λ) ≥ n(λ) + λ. Show that H is one-way: for any polynomial
time adversary A, there is a negligible ε such that

Pr

[
H(k, x′) = y :

k←Kλ
x←{0,1}m(λ)

y←H(k,x)
x′←A(k,y)

]
< ε(λ)

4 Bonus Problem 4 (5 points)

Bonus problem: Suppose m(λ) = n(λ) + 1 in Problem 3. Show that H is not
necessarily one-way. That is, construct a hash function H such that H is collision
resistant, but H is not one-way. You may assume as a building block any collision
resistant hash function H ′.

5 Problem 5 (20 points)

Let (Gen, Sign,Ver) be a signature scheme with message space {0, 1}∗. Suppose the
scheme is only one-time secure. You will show how to use it to build a stateful scheme
that is secure for an arbitrary number of messages. The basic idea is that, every time
you want to sign a message m0, you will actually generate a new secret key/public key
pair (sk1, pk1)← Gen(λ), and sign the pair (m0, pk1). The overall signature will be pk1
together with the signature on (m0, pk1). You will then update your secret key to sk1,
and the receiver will update the public key to pk1. When you want to sign the next

2



message m1, you will generate a new secret key/public key pair (sk2, pk2)← Gen(λ),
and sign the pair (m1, pk2). This process continues for every message sign. The result
is that any secret key is only used to sign a single message.

(a) Turn the above idea into a functioning signature scheme. That is, formally
describe how signing and verifying work. Prove that the attacker, even after
seeing an arbitrary number of signed messages of their choice, will be unable to
produce a forgery.

(b) One problem with the above scheme is that an adversary intercepting com-
munication may drop a message, which will result in the sender and receiver
becoming out of sync. To resolve this issue, explain how to modify the signature
scheme so that the recipient does not need to keep any state. Hint: the size of
your signatures is allowed to grow linearly as more messages are signed

(c) your answer to Part (b) had a signature size that was linear in the number of
users. Show that, if you have an upper bound of L on the number of messages
that will ever be signed, you can actually have signatures of length O(logL).
Your secret key, the sender’s state, and the time it takes to sign and verify
should all be at most O(logL).

Note that by setting L = 2λ, you can handle any polynomial number of messages
while keeping everything efficient

Hint: Consider signing two public keys for every message, instead of just 1

(d) It turns out that with a bit more effort, it is actually possible to build a
full many-time secure stateless signature scheme from secret key tools, such
as substitution-permutation networks. However, in practice, no one uses such
signatures. Explain why this might be the case.

3


	Problem 1 (10 points)
	Problem 2 (15 points)
	Problem 3 (5 points)
	Bonus Problem 4 (5 points)
	Problem 5 (20 points)

