COS 433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

Last day to submit HW1 HW2 will be posted today

Due September 29

PR1 Due October 6

Previously on COS 433...

Defining Pseudorandom Generator (PRG)

Syntax:

- Seed space S_{λ}
- Output space X_{λ}
- G: $S_{\lambda} \rightarrow X_{\lambda}$ (deterministic)

Correctness:

- $|s|=\log|S_{\lambda}|$, $|x|=\log|X_{\lambda}|$ polynomial in λ ,
- $\cdot |X_{\lambda}| > 2 \times |S_{\lambda}|$
- Running time of G polynomial in λ

Security of PRGs

Definition: $G:S_{\lambda} \rightarrow X_{\lambda}$ is a secure pseudorandom generator (PRG) if:

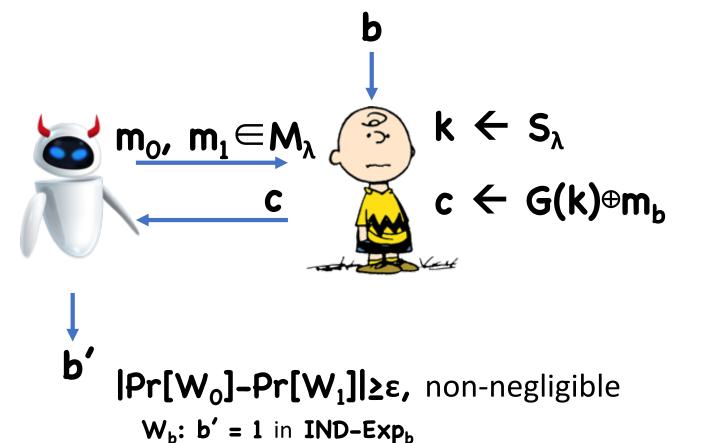
• For all n running in polynomial time, \exists negles,

Pr[
$$\lambda$$
 (G(s))=1:s \leftarrow S $_{\lambda}$]

- Pr[λ (x)=1:x \leftarrow X $_{\lambda}$] $\leq \varepsilon(\lambda)$

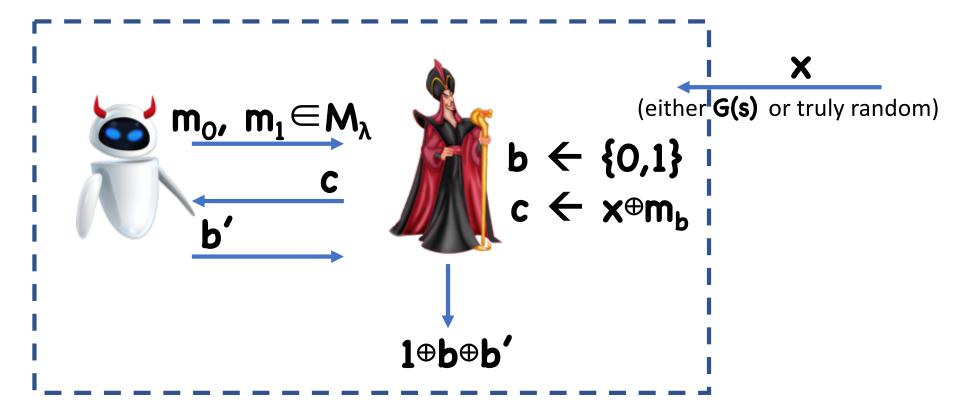
Security

Assume towards contradiction that there is a \(\biggream\) and non-negligible ε such that



Security

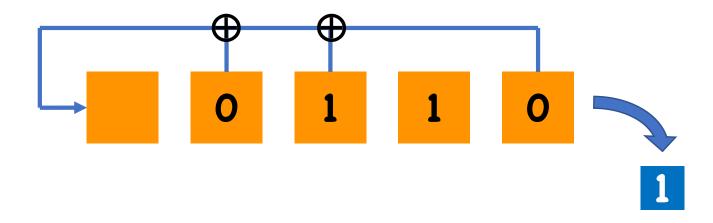
Use \gtrsim to build \gtrsim will run \gtrsim as a subroutine, and pretend to be



Insecure: Linear Feedback Shift Registers

In each step,

- Last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits



PRGs should be Unpredictable

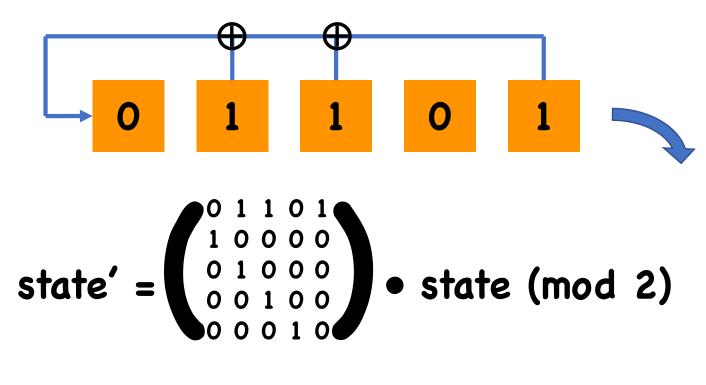
More generally, it should be hard, given some bits of output, to predict subsequent bits

Definition: $G:S_{\lambda} \to \{0,1\}^{n(\lambda)}$ is **unpredictable** if, for all polynomial time \mathfrak{L} and any $p=p(\lambda)$, \exists negligible ε such that:

$$Pr[G(s)_{p+1} \leftarrow F(G(s)_{[1,p]})] - \frac{1}{2} \leq \epsilon(\lambda)$$

Linearity

Problem: LFSR's are linear



output = (0 0 0 0 1) • state (mod 2)

LFSR period

Period = number of bits before state repeats

After one period, output sequence repeats

Therefore, should have extremely long period

- Ideally almost 2^λ
- Possible to design LFSR's with period 2^λ-1

Today: Constructing Software PRGs

Hardware vs Software

PRGs based on LFSR's are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG

Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers

Permutation stored as 256-byte array S

```
Init(16-byte k):
    For i=0,...,255
        S[i] = i
        j = 0
        For i=0,...,255
            j = j + S[i] + k[i mod 16] (mod 256)
            Swap S[i] and S[j]
        Output (S,0,0)
```

RC4

```
GetBits(S,i,j):

• i++ (mod 256)

• j+= S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• Output (S,i,j), S[t]
```

New state

Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0

- $Pr[second byte = 0^8] \approx 2/256$
- Should be 1/256

Means RC4 is not secure according to our definition

- a outputs 1 iff second byte is equal to 08
- Advantage: ≈ 1/256

Not a serious attack in practice, but demonstrates some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the input **k** in some use cases

- The seed is set to (IV, k) for some initial value IV
- Encrypt messages as RC4(IV,k)⊕m
- Also give IV to attacker
- Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption standard

PRGs Today

LFSRs and RC4 should not be used for cryptographic purposes, though RC4 still widely used

As course goes on, will see more PRGs

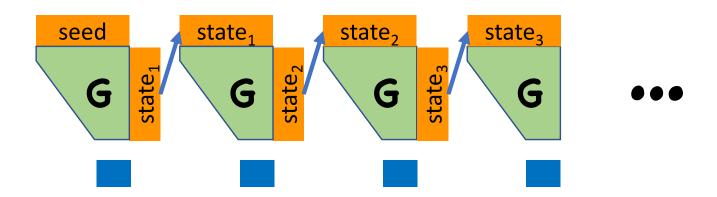
Length Extension for PRGs

Suppose I give you a PRG $G:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda+1}$

On it's own, not very useful: can only compress keys by 1 bit

But, we can use it to build PRGs with *arbitrarily-long* outputs!

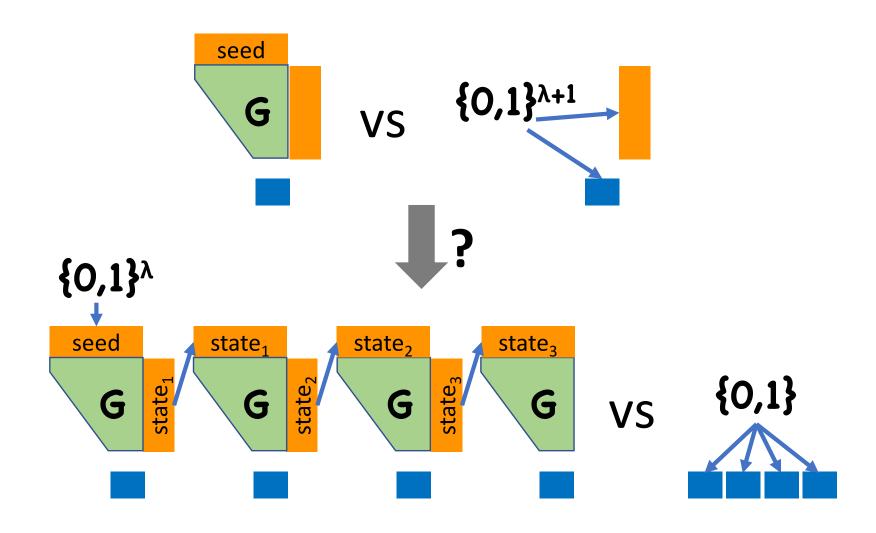
Extending the Stretch of a PRG



Assume towards contradiction 🥻 that breaks big PRG

Goal: build adversary 🕵 that breaks **G**

Problem?



Hybrid Arguments

Ubiquitous in crypto proofs

distinguishes between two cases

Call them H₀ and H_t

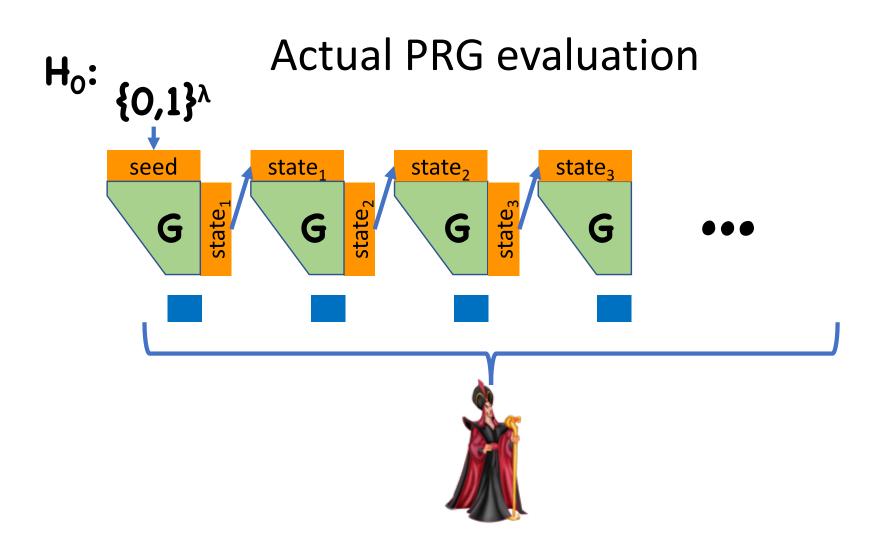
Devise intermediate experiments $H_1, ..., H_{t-1}$ that "interpolate" between H_0 and H_t

Only change one thing at a time

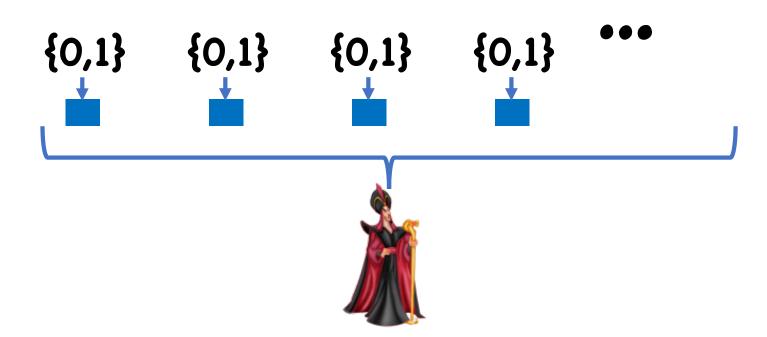
Use triangle inequality to conclude that \hat{I} distinguishes H_{i-1} and H_i

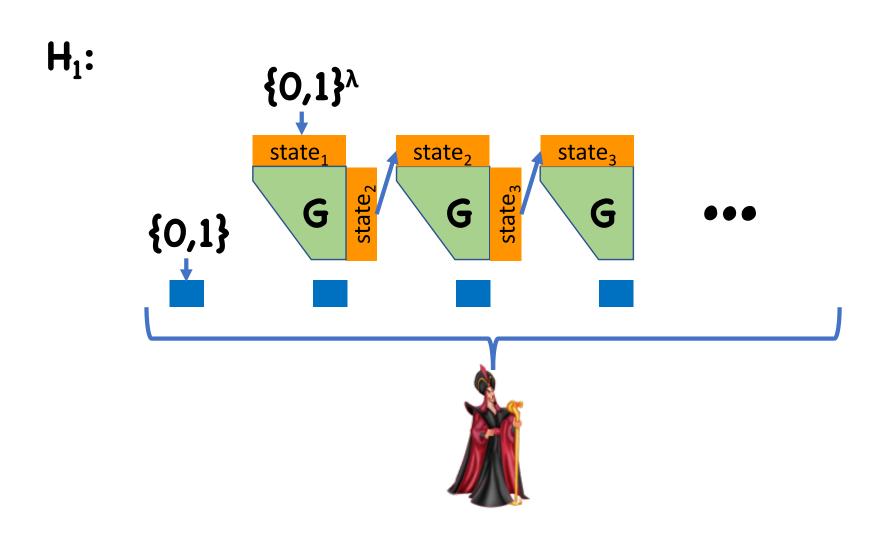
Use such a distinguisher to build

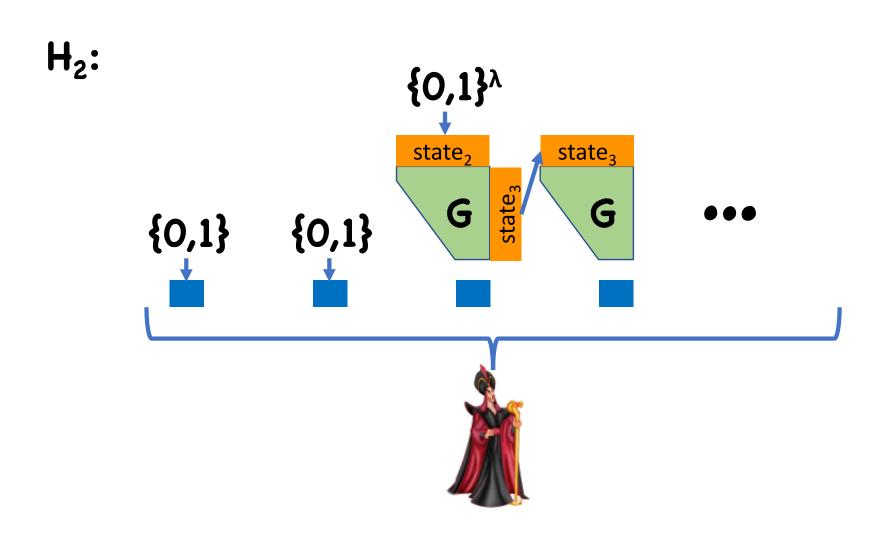
Proof by Hybrids



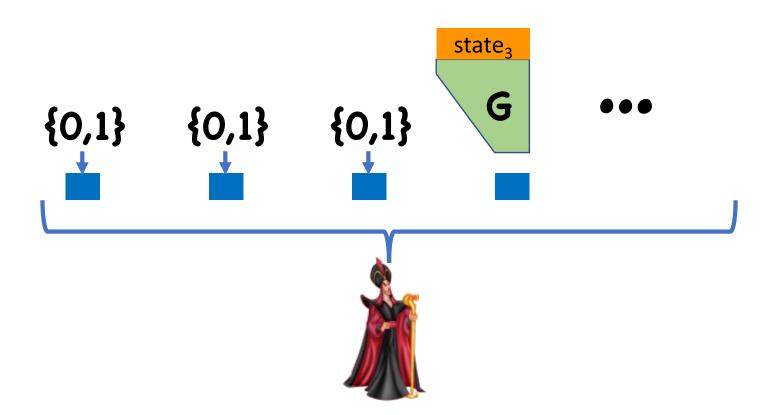
H_t: Truly Random Values



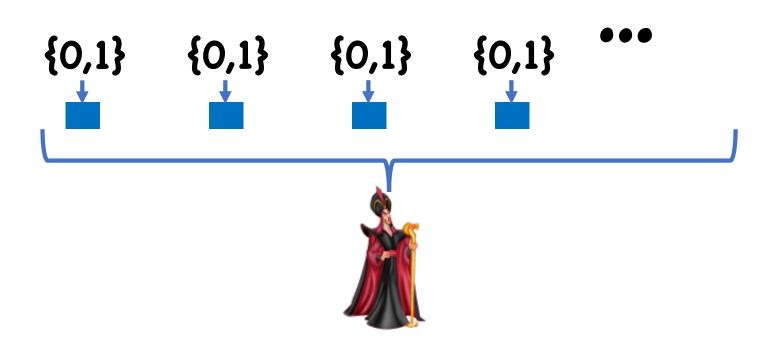




H₂:



H_t:



 H_0 corresponds to pseudorandom \mathbf{x} H_t corresponds to truly random \mathbf{x}

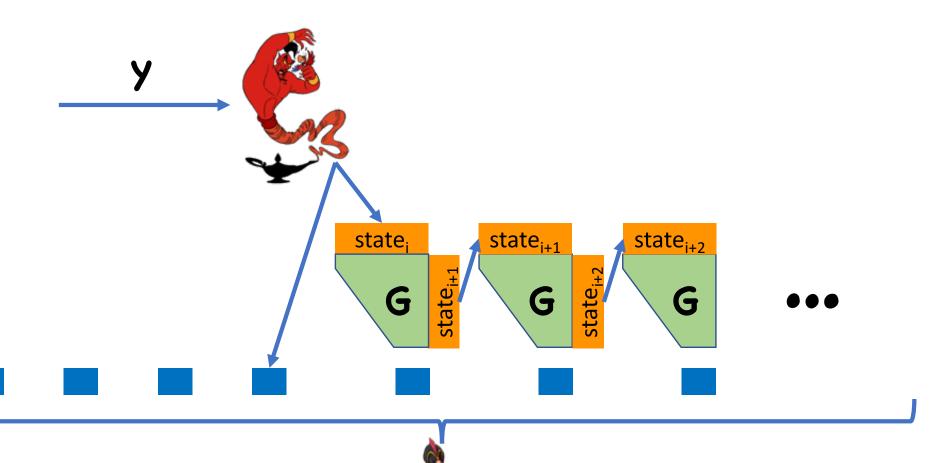
Let
$$q_i = Pr[\hat{x}(x)=1:x \leftarrow H_i]$$

By assumption, $|\mathbf{q}_t - \mathbf{q}_0| > \varepsilon$

Triangle ineq:

$$|q_t - q_0| \le |q_1 - q_0| + |q_2 - q_1| + ... + |q_t - q_{t-1}|$$

$$\Rightarrow \exists i \text{ s.t. } |q_i - q_{i-1}| > \epsilon/t$$



```
Analysis
• If y = G(s), then sees H_{i-1}
\Rightarrow \Pr[\text{ outputs 1}] = q_{i-1}
\Rightarrow \Pr[\text{ outputs 1}] = q_{i-1}
```

- If y is random, then sees H_i $\Rightarrow \Pr[\text{ in outputs 1}] = q_i$ $\Rightarrow \Pr[\text{ in outputs 1}] = q_i$
 - \Rightarrow Pr[$\bigcirc outputs 1] = q_i$

Hybrids Recap

Useful whenever you can't directly map between experiments

Only change one thing at a time, change corresponds to security of building block

Not always obvious what hybrid sequence should be

Summary So Far

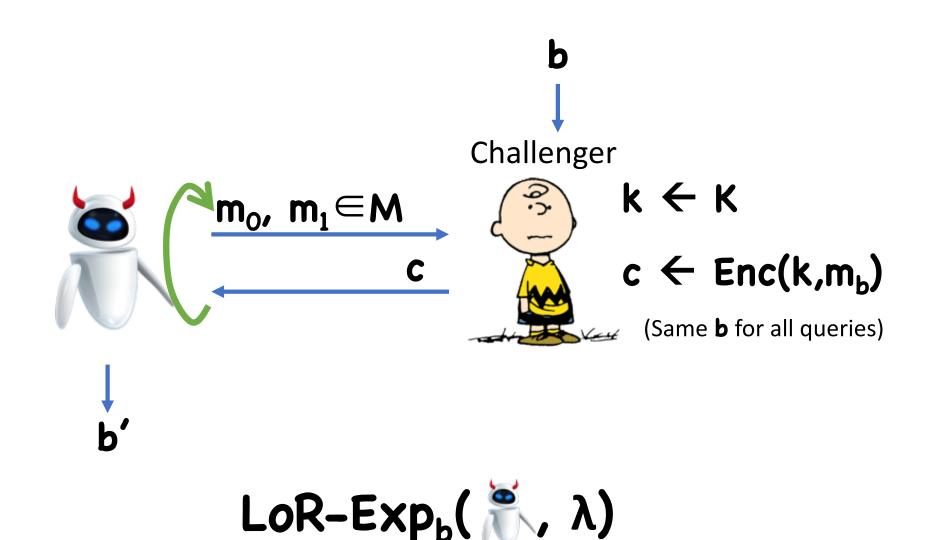
Stream ciphers = Encrytpion with PRG

 Secure encryption for arbitrary length, number of messages (though we did not completely prove it)

However, implementation difficulties due to having to maintaining state

Multiple Message Security

Left-or-Right Experiment



LoR Security Definition

```
Definition: (Enc, Dec) has Left-or-Right indistinguishability if, for all \mathbb{R} running in polynomial time, \exists negligible \varepsilon such that:

Pr[1\leftarrow LoR-Exp_0(\mathbb{R}, \lambda)]
-Pr[1\leftarrow LoR-Exp_1(\mathbb{R}, \lambda)] \leq \varepsilon(\lambda)
```

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Midway Island, WWII:
 - US cryptographers discover Japan is planning attack on a location referred to as "AF"
 - Guess that "AF" meant Midway Island
 - To confirm suspicion, sent message in clear that Midway Island was low on supplies
 - Japan intercepted, and sent message referencing "AF"

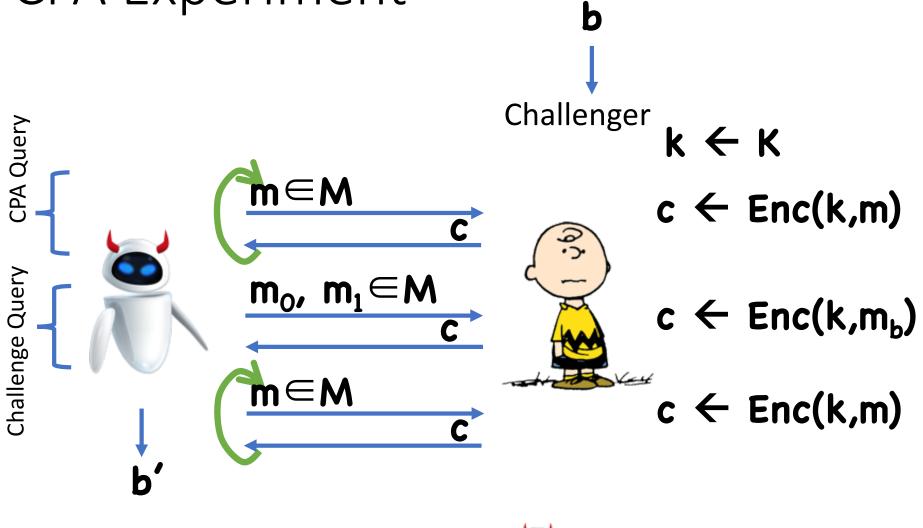
Alternate Notion: CPA Security

What if adversary can additionally learn encryptions of messages of her choice?

Examples:

- Mines, WWII:
 - Allies would lay mines at specific locations
 - Wait for Germans to discover mine
 - Germans would broadcast warning message about the mines, encrypted with Enigma
 - Would also send an "all clear" message once cleared

CPA Experiment



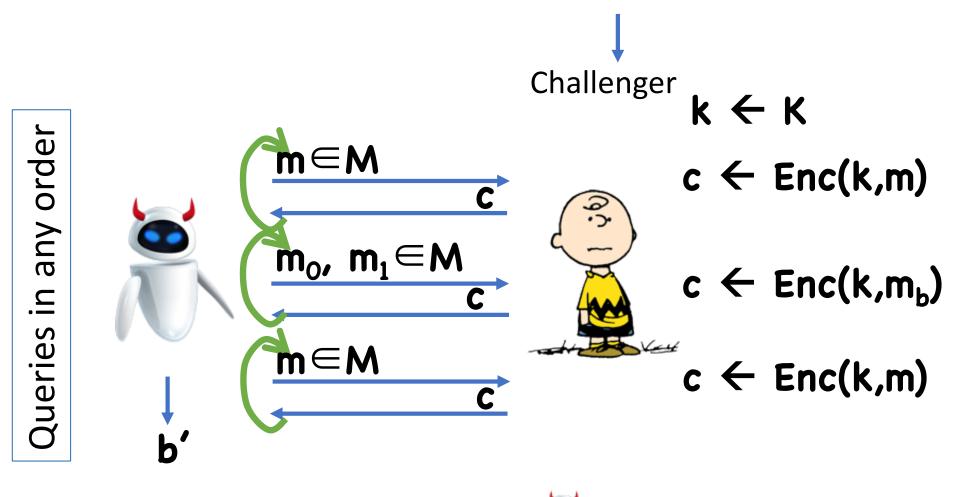
CPA-Exp_b(\(\big|\))

CPA Security Definition

Definition: (Enc, Dec) is CPA Secure if, for all \mathbb{F} running in polynomial time, \exists negligible ε such that:

Pr[1←CPA-Exp₀(
$$\stackrel{\sim}{\sim}$$
, λ)]
- Pr[1←CPA-Exp₁($\stackrel{\sim}{\sim}$, λ)] ≤ ε(λ)

Generalized CPA Experiment



GCPA-Exp_b(\mathbb{R} , λ)

GCPA Security Definition

Definition: (Enc, Dec) is **Generalized CPA Secure** if, for all β unning in polynomial time, β negligible ϵ such that:

Pr[1
$$\leftarrow$$
GCPA-Exp₀($\stackrel{\sim}{\mathbb{N}}$, λ)]
- Pr[1 \leftarrow GCPA-Exp₁($\stackrel{\sim}{\mathbb{N}}$, λ)] $\leq \epsilon(\lambda)$

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

1

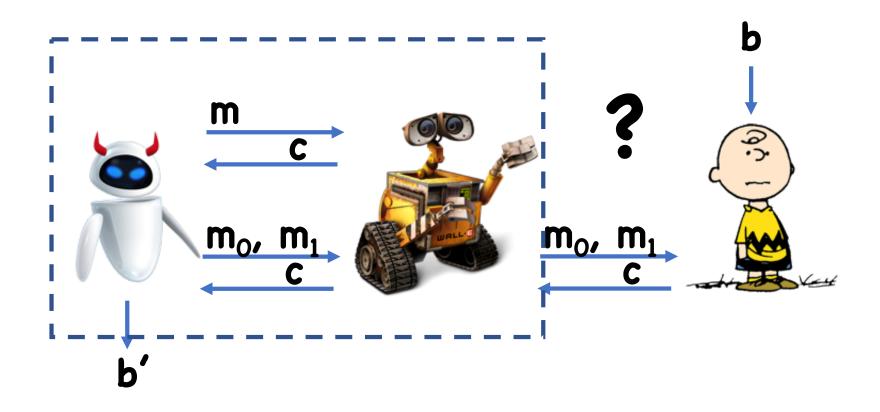
Generalized CPA-security

Generalized CPA-security → CPA-security

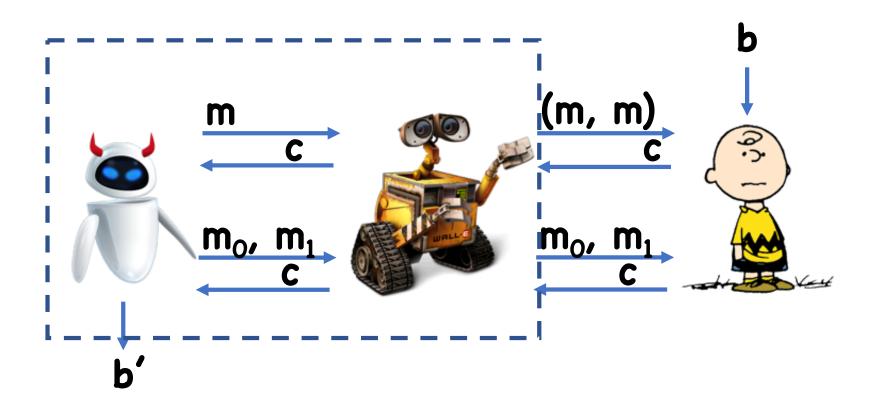
 Trivial: any adversary in the CPA experiment is also an adversary for the generalized CPA experiment that just doesn't take advantage of the ability to make multiple challenge/LoR queries

Left-or-Right → Generalized CPA

- Assume towards contradiction that we have an adversary for the generalized CPA experiment
- Construct an adversary that runs as a subroutine, and breaks the Left-or-Right indistinguishability



 $Pr[1\leftarrow LoR-Exp_b(\sqrt[3]{k}, \lambda)] = Pr[1\leftarrow GCPA-Exp_b(\sqrt[3]{k}, \lambda)]$



 $Pr[1\leftarrow LoR-Exp_b(\sqrt[3]{k}, \lambda)] = Pr[1\leftarrow GCPA-Exp_b(\sqrt[3]{k}, \lambda)]$

Left-or-Right → Generalized CPA

$$Pr[1\leftarrow LoR-Exp_o(\lambda, \lambda)]$$

=
$$Pr[1 \leftarrow GCPA - Exp_o(^*, \lambda)]$$

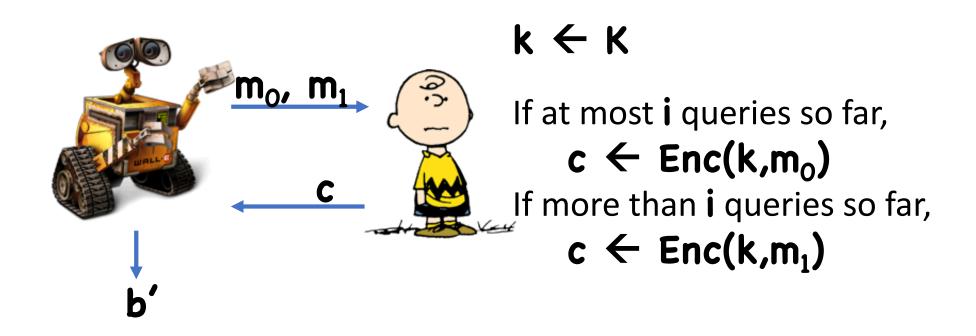
- Pr[1←GCPA-Exp₁(
$*$
, λ)] = ε

(regular) CPA → Left-or-Right

 Assume towards contradiction that we have an adversary for the LoR Indistinguishability

• Hybrids!

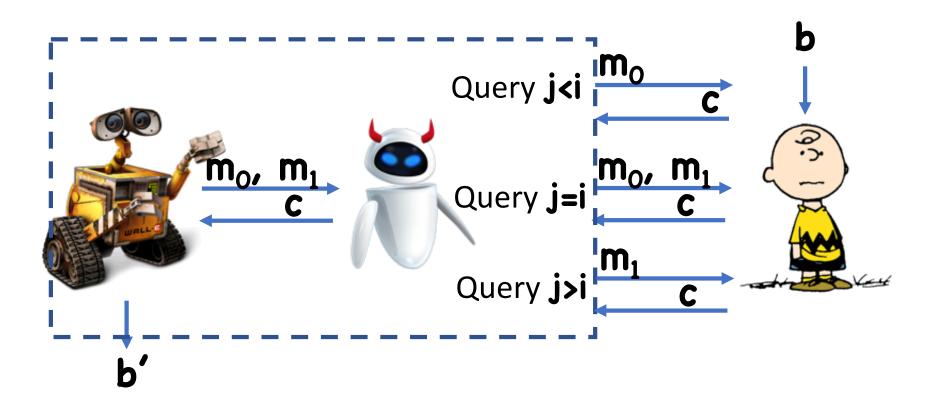
Hybrid **i**:



(regular) CPA → Left-or-Right

• Hybrid **O** is identical to LoR-Exp₁(λ)

- Hybrid **q** is identical to LoR-Exp₀(\gtrsim , λ)
- - $\Rightarrow \exists i \text{ s.t.}$ distinguishes Hybrid i and Hybrid i 1 with advantage ϵ/q



$$Pr[1 \leftarrow CPA - Exp_b(\tilde{h}, \lambda)] = Pr[1 \leftarrow \tilde{k} \text{ in Hybrid } i-b]$$

(regular) CPA → Left-or-Right

$$Pr[1\leftarrow CPA-Exp_o(\hbar, \lambda)]$$

Equivalences

Theorem:

Left-or-Right indistinguishability

1

CPA-security

(

Generalized CPA-security

Therefore, you can use whichever notion you like best Next time: how to construct

Announcements/Reminders

Last day to submit HW1 HW2 will be posted today

Due September 29

PR1 Due October 6