COS 433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

Last day to submit HW1
HW2 will be posted today
* Due September 29

PR1 Due October 6

Previously on COS 433...

Defining Pseudorandom
Generator (PRG)

Syntax:

* Seed space S,

* Output space X,

* G: S, 2 X, (deterministic)

Correctness:

* |sl=loglS,|, Ixl=loglX,| polynomialin A,
* Ix;\l > ZXIS)\I

* Running time of G polynomial in A

Security of PRGs

/Definition: G:S, =2 X, is asecure pseudorandom\
generator (PRQG) if:
For all ﬂ running in polynomial time, 3 negl g,

| eriji (G(s)=1:s€s,)

- Pri j (0=1:xex,] | < ea)
- /

Security

Assume towards contradiction that there is a
and non-negligible € such that

b

4
|Pr[W,]-Pr[W,]l2¢, non-negligible
W,: b’ = 1 in IND-Exp,

Security

Use 1 . to bwldi. i will run . as a subroutine,

and pretend to be 3

| X

<
(either'G(s) or truly random)

@ Mo MM,

—

) \4 C

nsecure: Linear Feedback Shift
Registers

In each step,
e Last bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
0 | | 0 \
1

PRGs should be Unpredictable

More generally, it should be hard, given some bits of
output, to predict subsequent bits

 Definition: G:S,>{0,1}"W is unpredictable if, for A
all polynomial timegéf and any p=p(A), =
negligible € such that:

| PriG(s),. <. B (Gle)y) 1 - % | < &(h)
_ J

Linearity

Problem: LFSR’s are linear
|
1 1 0) 1 \

— 0

01101
10000

state’ =(g},$gg e state (mod 2)
00010

output = (0 0 0 0 1) e state (mod 2)

LFSR period

Period = number of bits before state repeats
After one period, output sequence repeats
Therefore, should have extremely long period

e |deally almost 22
* Possible to design LFSR’s with period 2*-1

Today: Constructin,

Uuq

Software PRGs

Hardware vs Software

PRGs based on LFSR’s are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG
Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers
* Permutation stored as 256-byte array S

Init(16-byte K):

* Fori=0,...,255
Sli] =i

-j=0

* For i=0,...,255
j=J + S[i] + k[i mod 16] (mod 256)
Swap S[i] and S[j]

e Output (S,0,0)

RC4

GetBits(S,i,j):

* i++ (mod 256)

° j-l-: S[l] (mod 256)

* Swap S[i] and S[j]

*t = S[i] + S[j] (mod 256)
* Output (S,i,j), S[t]

SN

New state Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0
* Prlsecond byte = 08] = 2/256
* Should be 1/256

Means RC4 is not secure according to our definition
. i outputs 1 iff second byte is equal to 08
 Advantage: = 1/256

Not a serious attack in practice, but demonstrates
some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the
input K in some use cases
* The seed is set to (IV, k) for some initial value IV

* Encrypt messages as RC4(IV,k)em
* Also give 1V to attacker
e Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption
standard

PRGs Today

LFSRs and RC4 should not be used for cryptographic
purposes, though RC4 still widely used

As course goes on, will see more PRGs

Length Extension for PRGs

Suppose | give you a PRG G:§0,1}*>{0,1}*+!

On it’s own, not very useful: can only compress keys
by 1 bit

But, we can use it to build PRGs with arbitrarily-long
outputs!

Extending the Stretch of a PRG

Security Proof

Assume towards contradiction i that breaks big PRG

Goal: build adversary gg that breaks G

Problem?

<l -
L]
{0;1}7‘ l

{O, l}h-l-l
N
?

Hybrid Arguments

Ubiquitous in crypto proofs

distinguishes between two cases
* Call them H, and H,

Devise intermediate experiments H,...,H;_; that
“interpolate” between Hy and H;
* Only change one thing at a time

Use triangle inequality to conclude that ﬁ
distinguishes H;_, and H;
* Use such a distinguisher to build ez

Proof by Hybrids

H - Actual PRG evaluation
R (2

I
\ J

|

|

Security Proof

H,: Truly Random Values

Security Proof

{0,1}"

Security Proof

H.:
4

\{Oﬁ,l} {Oﬁ,l} Stait(e;- m/\ci Y
|

state

-
|

Security Proof
H,:

G (YY)

{0,1} 10,1}

Security Proof

H;:

Security Proof

H, corresponds to pseudorandom X
H; corresponds to truly random X

Let g; = Prl Jj (x)=1:x€H,]
By assumption, |q; = qol >

Triangle ineq:

19+ - qol £ lq;-qol + lq,-q;l +

= i st.lgq; = q4| > e/t

o + |q4=qy

Security Proof

Security Proof

Analysis

* Ify = G(s), theni sees H;_,
= Pr{ ﬂ outputs 1] = q;_,
= Pr[€, outputs 1] = q; ,

* If yis random, thenjl sees H;
= Pr ﬂ outputs 1] = q;
= Pr[€, outputs 1] = q;

Hybrids Recap

Useful whenever you can’t directly map between
experiments

Only change one thing at a time, change corresponds

to security of building block
* Not always obvious what hybrid sequence should be

Summary So Far

Stream ciphers = Encrytpion with PRG
e Secure encryption for arbitrary length, number of
messages (though we did not completely prove it)

However, implementation difficulties due to having
to maintaining state

Multiple Message Security

Left-or-Right Experiment

1

Challenger

é k € K

k¢ € Enc(k,m,)

' \A_.,__g (Same b for all queries)

LoR Security Definition

/Definition: (Enc, Dec) has Left-or-Right D
indistinguishability if, for all © runningin
polynomial time, 3 negligible € such that:

| Pri1€LoR-Exp,(=, A)]
- Pr[1<LoR-Exp,(“J\, A)] I < g(A) y

\

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions
of messages of her choice?

Examples:
* Midway Island, WWII:

* US cryptographers discover Japan is planning attack on a
location referred to as “AF”

e Guess that “AF” meant Midway Island

* To confirm suspicion, sent message in clear that Midway
Island was low on supplies

* Japan intercepted, and sent message referencing “AF”

Alternate Notion: CPA Security

What if adversary can additionally learn encryptions
of messages of her choice?

Examples:
* Mines, WWII:

 Allies would lay mines at specific locations

* Wait for Germans to discover mine

 Germans would broadcast warning message about the
mines, encrypted with Enigma

* Would also send an “all clear” message once cleared

CPA Experiment

b

1

Challenger

-

CPA Query
——
7

Challenge Query

CPA-Exp,(~.)

< K
¢ € Enc(k,m)

¢ € Enc(k,m,)

¢ € Enc(k,m)

CPA Security Definition

/Definition: (Enc, Dec) is CPA Secure if, for all © N

running in polynomial time, 3 negligible € such
that:

l Pr(1<CPA-Exp,(., A)]

o PrirecPa-Exp (=, N 1] < () y

Generalized CPA Experiment

1

Challenger

Queries in any order

< K
¢ € Enc(k,m)

¢ € Enc(k,m,)

¢ € Enc(k,m)

GCPA Security Definition

/Definition: (Enc, Dec) is Generalized CPA Secure if,\
forall ®unning in polynomial time, 3 negligible €
such that:

l Pr{1€GCPA-Expy(=, M)]

. - Pr(1<GCPA-Exp,(=, A] l < g(A) p

Equivalences

ﬁl‘ heorem:
Left-or-Right indistinguishability
|7

CPA-security
¢

Generalized CPA-security

Proof

Generalized CPA-security = CPA-security

* Trivial: any adversary in the CPA experiment is also
an adversary for the generalized CPA experiment
that just doesn’t take advantage of the ability to
make multiple challenge/LoR queries

Proof

Left-or-Right > Generalized CPA
e Assume towards contradiction that we have an

adversary = for the generalized CPA experiment

e Construct an adversary %’that runs ©. as a
subroutine, and breaks the Left-or-Right
indistinguishability

Pri1<LoR-Exp,(g& , M) = Pr{1€GCPA-Exp, (™, A)]

Pri1<LoR-Exp,(g& , M) = Pr{1€GCPA-Exp, (™, A)]

Proof

Left-or-Right > Generalized CPA
I Pr[léLoR-Expo(ﬁ", A)]
- Pr[léLoR-Expl(*%’, A)] I

= | PrincacPa-Expy (=,)]
- Pr{1<GCPA-Exp,(e, N] I =€

Proof

(regular) CPA - Left-or-Right
e Assume tovgnards contradiction that we have an
adversary g& for the LoR Indistinguishability

* Hybrids!

Hybrid i:

k € K

If at most i queries so far,

¢ < Enc(k,m,)

If more than i queries so far,

¢ € Enc(k,m,)

Proof

(regular) CPA - Left-or-Right
* Hybrid O is identical to LoR-Expl(%’, A)

* Hybrid q is identical to LoR-Expo(%", M)

* We know that %’ distinguishes Hybrid q and
Hybrid O with advantage €
= Fis.t. %’distinguishes Hybrid i and
Hybrid i-1 with advantage €/q

Pr[1<CPA-Exp,(e, N] =Prlie & in Hybrid i-b]

Proof

(regular) CPA - Left-or-Right
I Pr{1<CPA-Exp,(e,)]
- Pr{1<CPA-Exp,(L)] I

= I Pr[lé%’in Hybrid i]

- Pr[léi’ in Hybrid i-1] I > £/q

Equivalences

\

/Theorem:

Left-or-Right indistinguishability
¢

CPA-security
¢

Generalized CPA-security

/

Therefore, you can use whichever notion you like best
Next time: how to construct

Announcements/Reminders

Last day to submit HW1
HW2 will be posted today
* Due September 29

PR1 Due October 6

