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Announcements/Reminders

e HW1 due September 15
* PR1 due March 6

OH:

- Mark: Mondays 10-11am (starting next week)
- Udaya: Tuesdays 7-8pm (starting next week)
- Anunay: Wednesdays 1:30-2:30pm

(starting tomorrow)



Previously on COS 433...



Formalizing Encryption (syntax
and correctness)

Syntax:

* Key space K

* Message space M
* Ciphertext space C
*Enc: KxM => C
*Dec: KxC > M

Correctness:
* ForallkEK, mEM, Dec(k, Enc(k,m) ) = m



Example: Substitution Cipher

K? Perms({a,...,2})

M? {a,..,z}"

c? {a,..,z}

Enc(k,mm,...) = k(m,)k(m,)...
Dec(k,c,C,...) = kX (c,)kY(c,)...

Correctness: m," = k-}(c;) = k-}(k(m,)) = m



Encryption Security?

Questions to think about:

W

nat kind of messages?

W

nat does the adversary already know?

W

nat information are we trying to protect?

Examples:

* Messages are always either “attack at dawn” or
“attack at dusk”, trying to hide which is the case

* Messages are status updates (“<person> reports
<event> at <location>"). Which data is sensitive?



Encryption Security?

Questions to think about:

W

nat kind of messages?

W

nat does the adversary already know?

W

nat information are we trying to protect?

Goal:

Rather than design a separate system for
each use case, design a system that works

in all possible settings



Today: Encryption Security,
continued



Semantic Security

ldea:

* Plaintext comes from an arbitrary distribution

e Adversary initially has some information about the
plaintext

* Seeing the ciphertext should not reveal any more
information

* Model unknown key by assuming it is chosen
uniformly at random



(Perfect) Semantic Security

/Definition: A scheme (Enc,Dec) is (perfectly)

semantically secure if, for all:

~

e Distributions D on M Plaintext distribution
* Functions I:M>{0,1} Info adv gets
+ Functions :M>{0 l}* Info adv tries to learn
° ’
* Functions A:Cx{0,1}*>{0,1} Ad\{ersary
“Simulator”

There exists a function S:{0,1}*=>{0,1}" such that
Pr[ A( Enc(k,m) , I(m) ) = f(m) ]

= Pr[ S( I(m) ) = f(m) ]
 where probabilities are taken over KEK, m€D




Semantic Security

Captures what we want out of an encryption scheme
But, complicated, with many moving parts

Want: something simpler...



Notation

Two random variables X,Y over a finite set S have
identical distributions if, for all sE S,

Pr[ X=5s] = Pr[Y = 5]

In this case, we write

X

e

Y



Perfect Secrecy [Shannon’49]

/Definition: A scheme (Enc,Dec) has perfect
secrecy if, for any two messagesmy, m; € M

d
i Enc(K, m;) = Enc(K, m,) )

N\

Random variable corresponding
to encrypting m, using a
uniformly random key

Random variable corresponding
to uniform distribution over K




Semantic Security = Perfect Secrecy

Theorem: A scheme (Enc,Dec) is semantically
secure if and only if it has perfect secrecy

~ Semantic Security = Perfect Secrecy
- Side information: message € {m,,m,}
- Adversary trying to learn which one

Intuition
A

Perfect Secrecy = Semantic Security

- s(1(m)) = A( Enc(k,0), I(m) )




Perfect vs. Semantic Security

Semantic security is the “right” notion to intuitively
capture the desired security goals

Perfect is much simpler and easier to reason about

Fortunately, we know both are identical
= perfect security is almost always what is used



Any perfectly/semantically secure schemes?



Perfect Security of One-Time Pad

Fix any message mE40,1}", ciphertext cE40,1}"

Pr.[Enc(k,m)=c] = Pr, [kem=c]
= Pr, [k=mec]
=2"

Therefore, for any m, Enc(K, m) = uniform dist.

In particular, for any mg,m;,

Enc(K, m,) g Enc(K, m,)



Insecurity of Substitution/Transposition

Pr[Enc(K,m,) has 2 identical characters] = 1
Pr[Enc(K,m,) has 2 identical characters] = O



Proper Use Case for Perfect Security

* Message can come from any distribution
* Adversary can know anything about message
* Encryption hides anything

 But, definition only says something aboutan X
adversary that sees a single message
= |f two messages, no security guarantee

* Assumes no side-channels X
e Assumes key is uniformly random X



Variable Length Messages



Variable-Length Messages

OTP has message-length {0,1}" where n is the key
length

In practice, fixing the message size is often
unreasonable

So instead, will allow for smaller messages to be
encrypted



Variable-Length OTP

Key space K = {0,1}"
Message space M = {0,1}:"
Ciphertext space C = §0,1}<"

Enc(k, m) = k[l, Iml 1 em
DQC(k, C) = k[l, 1] ® €

Correctness:
Dec(k, Enc(k, m)) = ke(kem)
= (kek)om
= 0Oem

=m



Does the variable length OTP
have perfect secrecy according
to our definition?



Ciphertext Size

/Theorem: For a scheme with perfect secrecy, the h
expected ciphertext size for any message,
\E[ IEnc(K,m)l ], is at least (log, IMI) - 3 Y,

Proof Idea:

* | Enc(random message) | 2 log, IMI

* But, by security, Enc(any message) must be
distributed identically to Enc(random message)



Variable-Length Messages

For perfect secrecy of variable length messages, must
have expected ciphertext length for short messages
almost as long as longest messages

In practice, very undesirable
* What if | want to either send a 100mb attachment,
or just a message “How are you?”

Therefore, we usually allow message length to be
revealed



(Perfect) Semantic Security for
Variable Length Messages

D

efinition: A scheme (Enc,Dec) is (perfectly)

semantically secure if, for all:

Distributions D on M
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There exists (pro
Pr[ A( Enc(k,m) , I(m) ) =

= Pr[ S( I(m){ Iml)) =
\ where probabilities are taken over K€K, m€<D

~unctions I:M—>{0,1}"
“unctions f:M=>{0,1}"
“unctions A:Cx{0,1} >{0,1}"

vabilistic) func S:{0,1}*>{0,1}"

f(m) ]
f(m) ]

S.1.

/




Perfect Secrecy For Variable
_ength Messages

/Definition: A scheme (Enc,Dec) has perfect N
secrecy if, for any two messages m,, m; where
Imo| = Imy|,

N Enc(K, m,) = Enc(K, m,) .

Easy to adapt earlier thm to show:

Theorem: A scheme (Enc,Dec) is semantically
secure if and only if it has perfect secrecy




Variable-Length OTP

Key space K = {0,1}"
Message space M = {O'I}sn
Ciphertext space C = {0,1}*"

Enc(k, m) = k[ 1, Iml ] em
DQC(k, C) = k[ Lm]®C

[Theorem: Variable-Length OTP has perfect secrecy j




Encrypting Multiple
Messages



Re-using the OTP

What if we have a 100mb long key K, but encrypt
only Imb?

Can’t use first Imb of K again, but remaining 99mb is
still usable

However, basic OTP definition does not allow us to
re-use the key ever



Syntax for Stateful Encryption

Syntax:

* Key space K,Message space M,Ciphertext space C
 State Space S

Init: §} > S

* Enc: KxMxS > CxS

* Dec: KxCxS > MxS

State, € Init()
(c,, state,) € Enc(k,m,,state,)
(c,, state,) € Enc(k,m,,state,)



Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP

June




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP

(3]

C

¥
“m L

v

(N




Problem

In real world, messages aren’t always synchronous

What happens if Alice and Bob try to send message
at the same time?

They will both use the same part of the key!
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Solution

Alice and Bob have two keys
* One for communication from Alice to Bob
* One for communication from Bob to Alice

Can obtain two logical keys from one by splitting key
in half
* Ex: odd bits form K53, even bits form Kg 4



Reusing the OTP

kA%B kA%B
k89 A kB%A




Still A Problem

In real world, messages aren’t always synchronous

Also, sometimes messages arrive out of order or get

dropped
* Need to be very careful to make sure decryption

succeeds
And, what if more users?
These difficulties exist in any stateful encryption

* For this course, we will generally consider only
stateless encryption schemes



Perfect Security for Multiple Messages

/Definition: A stateless scheme (Enc,Dec) has perfect\
secrecy for n messages if, for any two sequences of

messages (Mo)icmy » (M) icm € M

(Enc(K, mo® ))ie[n] £ (Enc(k, m® ))ie[n]
\ J

Notation:( f(l) )iE[n] = ( F(l), f(z): ooy f(ﬂ) )



Stateless Encryption with Multiple Messages

Ex:

M=C

K = Perms(M) (never mind that key is enormous)
Enc( K, m) = K(m)

Dec( K, ¢) = K(c)

Q: Is this perfectly secure for two messages?



"

Theorem: No stateless deterministic
encryption scheme can have perfect security
for multiple messages

)

Proof Idea: can always tell if two
messages were the same or different



Randomized Encryption

Syntax:

* Key space K

* Message space M

* Ciphertext space C

* Enc: KxM = C, potentially probabilistic
* Dec: KxC 2> M (usually deterministic)

Correctness:



Randomized Encryption

Syntax:

* Key space K

* Message space M

 Ciphertext space C

* Enc: KxM = C, potentially probabilistic
* Dec: KxC 2> M (usually deterministic)

Correctness:
* Forall KEK, mEM,
Pr[ Dec(k, Enc(k,m) ) =m ] =

1



Stateless Encryption with Multiple Messages

Ex:

C = MxR r<R

K = Perms(C)

Enc( K, m) = K(m,r)

Dec( K, ¢) = (m’,r") € K!(c), outputm’

Q: Is this perfectly secure for two messages?



even randomized
\

-

-

;
Theorem: No stateless determtniste
encryption scheme can have perfect security
for multiple messages

~

J




Proof of Easy Case

Let (Enc,Dec) be stateless, deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:
* (@, c) = (Enc(K, my ), Enc(K, myt)) )
= ¢0) = ¢ (by determinism)

(@, cW) = ( Enc(K, m(® ), Enc(K, m,1)))
= ¢ ¢ ¢ (by correctness)



Generalize to Randomized Encryption

Let (Enc,Dec) be stateless,deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:

(@, c) = (Enc(K, my, ), Enc(K, myt)) )
— 9??7?

*(c@, cW) = ( Enc(K, m(® ), Enc(K, m,1)))
= ¢ ¢ ¢ (by correctness)



Generalize to Randomized Encryption

(c@,c®) =(Enc(K, m), Enc(K, m) )

Pric® = c)] ?

* Fix Kk

* Conditioned on k, ¢{® and ¢ are two
independent samples from same distribution

Enc(k, m)

Lemma: Given any distribution D over a finite
set X, Pr[Y=Y’': YED, Y €D] 2 1/IX|

e Therefore, Pr[c(® = ¢()] is non-zero



Generalize to Randomized Encryption

Let (Enc,Dec) be stateless, deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:
* (@, c) = (Enc(K, my® ), Enc(K, m®) )
= Pr[c® =cV] > 0

*(c@, c®) = (Enc(K, m© ), Enc(K, m®) )
= Pr[c® =cV] =0



What do we do now?

Tolerate tiny probability of distinguishing
e If Pr[c(® = c()] = 2-128 in reality never going to
happen

How small is ok?
* Discuss next time



