COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW5 due TODAY HW6 released soon

PR2 due Dec 5

Previously on COS 433...

Identification Protocols

Identification

Identification

Types of Attacks

Direct Attack:

Basic Password Protocol

Never ever (ever ever...) use

Salting

Let **H** be a hash function

s_i random

User	Salt	Pwd
Alice	SA	H(s _A ,pwd _A)
Bob	SB	$H(s_B,pwd_B)$
Charlie	S _C	$H(s_c,pwd_c)$
	•••	

Today

Identification continued
Zero knowledge
Crypto from minimal assumptions (if time)

Encrypt Passwords?

User	Pwd
Alice	Enc(k,pwd _A)
Bob	Enc(k,pwd _B)
Charlie	$Enc(k,pwd_c)$
•••	•••

Encrypt Passwords?

Again, never ever (ever ever....) use

- To check password, need to decrypt
- Must store decryption key k somewhere
- What if **k** is stolen?

Need to use one-way mechanism

With hash function, not even server can recover password

Types of Attacks

Security Against Eavesdropping

Security Against Eavesdropping

One solution: update **sk,vk** after every run

Advancing state:

- Time based (e.g. every minute, day, etc)
- User Action (button press)

Must allow for small variation in counter value

 Clocks may be off, user may accidentally press button

Stateless Schemes?

So far, all schemes secure against eavesdropping are stateful

Easy theorem: any one-message stateless ID protocol is insecure if the adversary can eavesdrop

Simply replay message

If want stateless scheme, instead want at least two messages

Challenge-Response

C-R Using Encryption

Theorem: If **(Enc,Dec)** is a CPA-secure secure SKE/PKE scheme, then the C-R protocol is a secret key/public key identification protocol secure against eavesdropping attacks

C-R Using MACs/Signatures

Theorem: If **(MAC,Ver)** is a CMA-secure secure MAC/Signature scheme, then the C-R protocol is a secret key/public key identification protocol secure against eavesdropping attacks

Types of Attacks

Man-in-the-Middle/Active:

Active Attacks

For enc-based C-R, CPA-secure is insufficient

Instead need CCA-security (lunch-time sufficient)

For MAC/Sig-based C-R, CMA-security is sufficient

Non-Repudiation

Consider signature-based C-R

Bob can prove to police that Alice passed identification

What if Bob could have come up with a valid transcript, without ever interacting with Alice?

Then Bob cannot prove to police that Alice authenticated

Seems impossible:

• If (public) **vk** is sufficient to come up with valid transcript, why can't an adversary do the same?

Adversary CAN come up with valid transcripts, but Bob doesn't accept transcripts

• Instead, accepts interactions

Ex: public key Enc-based C-R

- Valid transcript: (c,r) where c encrypts r
- Anyone can come up with a valid transcript
- However, only Alice can generate the transcript for a given c

Takeaway: order of messages matters

Zero Knowledge Proofs

Mathematical Proof

Statement x

Witness/proof w

Interactive Proof

Statement x

Properties of Interactive Proofs

Let **(P,V)** be a pair of probabilistic interactive algorithms for the proof system

Completeness: If w is a valid witness for x, then V should always accept

Soundness: If **x** is false, then no cheating prover can cause **V** to accept

- Perfect: accept with probability O
- Statistical: accept with negligible probability
- Computational: cheating prover is comp. bounded

Intuition: verifier doesn't learn anything by engaging in the protocol (other than the truthfulness of **x**)

How to characterize what adversary "knows"?

- Only outputs a bit
- May "know" witness, but hidden inside the program's state

First Attempt:

 \exists "simulator" \mathbf{x} , s.t. for every true statement \mathbf{x} , valid witness \mathbf{w} ,

$$(x) \approx_{c} P(x,w) \longrightarrow V(x)$$

First Attempt:

Assumes Bob obeys protocol

"Honest Verifier"

But what if Bob deviates from specified prover algorithm to try and learn more about the witness?

For every malicious verifier \mathbf{V}^* , \exists "simulator" \mathbf{x} , s.t. for every true statement \mathbf{x} , valid witness \mathbf{w} ,

$$\approx_{c} P(x,w) \stackrel{\longrightarrow}{\longrightarrow} V^{*}(x)$$

Statements: x is a Q.R. mod N

Witness: $w \text{ s.t. } w^2 \text{ mod } N = x$

Zero Knowledge:

What does Bob see?

- A random QR y,
- A random bit b,
- A random root of x^by

Idea: simulator chooses **b**, then **y**,

Can choose y s.t. it always knows a square root of x^by

Honest Verifier Zero Knowledge:

- Choose a random bit b
- Choose a random string Z
- Let $y = x^{-b}z^2$
- Output (y,b,z)

- If x is a QR, then y is a random
 QR, no matter what b is
- z is a square root of x^by

(y,b,z) is distributed identically to (P,V)(x)

(Malicious Verifier) Zero Knowledge:

(Malicious Verifier) Zero Knowledge:

Proof:

- If x is a QR, then y is a random QR, independent of
 b'
- Conditioned on b'=b, then (y,b,z) is identical to random transcript seen by V*
- b'=b with probability 1/2

Repetition and Zero Knowledge

(sequential) repetition also preserves ZK

Unfortunately, parallel repetition might not:

- m makes guesses $b_1', b_2', ...$
- Generates valid transcript only if all guesses were correct
- Probability of correct guess: 2^{-†}

Maybe other simulators will work?

 Known to be impossible in general, but nothing known for QR

Zero Knowledge Proofs

Known:

- Proofs for any NP statement assuming statisticallybinding commitments
- Non-interactive ZK proofs for any NP statement using trapdoor permutations