COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW5 due Nov 10

PR2 due Dec 5

Previously on COS 433...

Digital Signatures

(aka public key MACs)

Message Integrity in Public Key Setting

m
' ;} ’ ’

» m,o u m ,o fr;Li)

> —— >

L’) h B
s

pK
Ver(pk,m’,c’)

Goal: If Eve changed m, Bob should reject

Digital Signatures

Algorithms:

* Gen() > (sk,pk)

* Sign(sk,m) 2> o

* Ver(pk,m,c) > 0/1

Correctness:

Pr[Ver(pk,m,Sign(sk,m))=1: (sk,pk)<Gen()] = 1

Building Digital Signatures

Non-trivial to construct with provable security

Most efficient constructions have heuristic security

Signatures from TDPs

GenSig() = Gen()
Sign(sk,m) = F-l(sk, H(m))

Ver(pk,m,c): F(pk, o) == H(m)

‘Theorem: If (Gen,FF1) is a secure TDP, and H is h
“modeled as a random oracle”, then
\(Gensig,Sign,Ver) is (strongly) CMA-secure)

Basic Rabin Signatures

Geng;,(): let p,q be random large primes
sk = (p.q), pk =N = pq

Sign(sk,m): Solve equation 62 = H(m) mod N

using factors p,q
* OQutput o

Ver(pk,m,c): 62 mod N == H(m)

Today

Signatures cont.
|dentification protocols

Schnorr Signatures

sk = w

pk = h:=g"

Sign(sk,m): Ver(h,m,(a,c)):

3 /A b<H(m,a)

° aégr axhb - C?

* b&H(m,a) p N
e cér+wb Theorem: If Dlog is hard and H
 Output (a,c) Is modeled as a random oracle,

then Schnorr signatures are
\strongly CMA secure

What's the Smallest Signature?

RSA Hash-and-Sign: 2 kilobits

ECDSA (variant of Schnorr using “elliptic curves”):
around 512 bits

BLS: 256 bits
Are 128-bit signhatures possible?

* No fundamental reason for impossibility, but all
(practical) schemes require 256 bits or more

Digital Signatures and the Public
Key Infrastructure

Digital Signatures and the Public
Key Infrastructure

Digital Signatures and the Public
Key Infrastructure

. Ly pk
\) c:=Enc(pk',m) \" 4
- sk’
1

m

Digital Signatures and the Public
Key Infrastructure

LSy pk

< <

Pl SK
w%" c'=Enc(pk',>m) s c=Enc(pk,m) \“‘Q)

. sk’ “'
|

m

Takeaway

Need some authenticated channel to ensure
distribution of public keys

But how to authenticate channel in the first place
without being able to distribute public keys?

Solution: Certificate Authorities
CA

Business
Government Agency
Department within company

SKea /)
W

Solution: Certificate Authorities

Cert.,5p=Sign(skc,, Bob’s public key is pkg”)

Solution: Certificate Authorities

Bob is typically some website

* Obtains Cert by, say, sending someone in person
to CA with pkg

* Only needs to be done once

If Alice trusts CA, then Alice will be convinced that
pKg belongs to Bob

Alice typically gets pK¢a bundled in browser

Limitations

Everyone must trust same CA
* May have different standards for issuing certs

Single point of failure: if sK., is compromised, whole
system is compromised

Single CA must handle all verification

Multiple CAs

There are actually many CA’s, CA,, CA,,...

Bob obtains cert from all of them, sends all the certs
with his public key

As long as Alice trusts one of the CA’s, she will be
convinced about Bob’s public key

Certificate Chaining

CA issues Cert g for Bob

Bob can now use his signing key to issue Certgsp to
Donald

Donald can now prove his public key by sending

(Certcpss Certysp)
* Proves that CA authenticated Bob, and Bob

authenticated Donald

Certificate Chaining

For Bob to issue his own certificates, a standard cert

should be insufficient

* CA knows who Bob is, but does not trust him to
issue certs on its behalf

Therefore, Bob should have a stronger cert:

Cert ,5p=Sign(sk.,, Bob’s public key is pkg and he can
issue certificates on behalf of CA”)

Certificate Chaining

One root CA

Many second level CAs CA,, CA,,...
e Each has Cel“‘l'CAQCAi

Advantage: eases burden on root

Disadvantage: now multiple points of failure

Invalidating Certificates

Sometimes, need to invalidate certificates
* Private key stolen

e User leaves company

* Etc

Options:
* Expiration
* Explicit revocation

ldentification Protocols

ldentification

<.
.\)‘ >
<
(i .

ldentification

L

/

ldentification

To identify yourself, you need something the
adversary doesn’t have

Typical factors:

* What you are: biometrics (fingerprints, iris scans,...)
* What you have: Smart cards, SIM cards, etc

*What you know: Passwords, PINs, secret keys

Today

Types of ldentification Protocols

Secret key:

) i —
" B VK \
Public Key:
. @
< ('»@; Y \

" B VK vk

Types of Attacks

Direct Attack:

Types of Attacks

Eavesdropping/passive:
2

Types of Attacks

Eavesdropping/passive:
&

Types of Attacks

Man-in-the-Middle/Active:

Types of Attacks

Man-in-the-Middle/Active:

>
>

3 Y

Basic Password Protocol

Never ever (ever ever...) use

:\i sk .

Problem with Basic Pwd Protocol

vk must be kept secret at all costs

Issue:

% pwd, vser | pwa

& g Alice PWdA

) y/ Bob pwd;
Charlie pwd,

Problem with Basic Pwd Protocol

vk must be kept secret at all costs
= MOTHERBOARD =3 -
Issue: Another Day, Another Hack: 117

Pw Million LinkedIn Emails And
Passwords mpw

SUBSCRIBDE

II‘\(-]Ii -BI{IF,F: \;()ll'lli OLD MYSPACE ACCOUNT JUST
CAME BACK TO HAUNT YOU

r— JACK BRIEF: ILACKERS BREACH A BILLION YAI00
JACK BRIEF: 1-YEAR-OLD DROPBOX HACK EXPOSED 68 \CCOUNTS. IO
MILLION woﬁn\n\l\ ——— U !

theguardian

arts lifestyle fas = all

Tumblr

More than 65m Tumblr emails for sale on the
darknet

Slightly Better Version

STILL never ever (ever ever...) use

Let H be a hash function

2 sk .
x .‘
sk=pwd ~ vk=H(pwd)

H(Sk) == vk?

Slightly Better Version

STILL never ever (ever ever...) use

Let H be a hash function

5% pwd, s T
g Alice H(pwd,)
’ w 6 Bob H(PWdB)

Charlie H(pwd,)

Slightly Better Version

STILL never ever (ever ever...) use

Advantage of hashing:

* Now if pwd database is leaks, adversary only gets
hashes passwords

* For identification protocol, need actual password

* Therefore, adversary needs to invert hash function
to break protocol

* Presumed hard

Weak Passwords

Data from 10M passwords leaked in 2016:

1. 12345 7
17% /V 23456 10. 987654321 19. 555555

2. 123456789 11. gwertyuiop 20. 3ristla7qe
3. qwerty 14 mynoob 21. google

4. 12345678 13. 123321 22. 1q2w3edr5t
5. 111111 14, 666666 23. 123qwe

6. 1234567890 15. 18atcskd2w 24, zxcvbnm

[£ 1234567 16. 71777777 25. 1g2w3e

8. password 17. 1q2w3edr

\ T)

50% of available passwords

https://blog.keepersecurity.com/2017/01/13/most-common-passwords-of-2016-research-study/

Weak Passwords

Of course, pwds that have been leaked are likely the
particularly common ones

Even so, 360M pwds covers about 25% of all users

Online Dictionary Attacks

Suppose attacker gets list of usernames

Attacker tries logging in to each with pwd = 123456’

5-17% of accounts will be compromised

Online Dictionary Attacks

How to slow down attacker?

* Lock out after several unsuccessful attempts
* Honest users may get locked out too

* Slow down response after each unsuccessful

attempt
e 1s after 1%t, 2s after 2"d 4s after 379 etc

Offline Dictionary Attacks

Suppose attacker gets hashed password vk = H(pwd)

Attack:

* Assemble dictionary of 360M common passwords
* Hash each, and check if you get vk

* If so, you have just found pwd!

On modern hardware, takes a few seconds to recover a
a passwords 25% of the time

Offline Dictionary Attacks

Now consider what happens when adversary gets
entire hashed password database

* Hash dictionary once: O(|Dl)

* Index dictionary by hashes

* Lookup each database entry in dictionary: O(|L|)

To get 25% of passwords takes O(IDI+IL|) time
 Amortize cost of hashing dictionary over many
passwords

Salting

Let H be a hash function
s; random

Alice SA H(sAlPWdA)

Bob sg H(sgpwdg)
Charlie Sc H(SC,PWdc)

Salting

Salt length? Enough to make each user’s salt unique
* At least 64 bits

Salting kills amortization:
* To recover Alice’s key, adversary must hash entire
dictionary with s,
* To recover Bob’s key, adversary must hash entire
dictionary with Sg
* Must hash entire dictionary again for each user
Running time: O(IDIxILI)

Unique Passwords

Different websites may employ different standards

for password security
 Some may store passwords in clear, some may hash

without salt, some may salt

If you use the same password at a bank (high
security) and your high school reunion (low security),
could end up with your password stolen

Unique Passwords

Solutions:
* Password managers

 Salt master password to generate website-specific
password (e.g. pwdhash):

Master password: pwd
Pwd for abcdefg.com: H(abcdefg.com,pwd)

What Hash Function to Use

In LindedIn leak (using Shal), 90% of passwords were
recovered within a week

Problem: Shal is very fast!

To make hashing harder, want hash function that is
just slow enough to be unnoticeable to user

What Hash Function to Use

Examples: PBKDF2, bcrypt
* [terate hash function many times:
H'(x) = H(H(H(....H(x)....)))

 Set #iterations to get desired hashing time

Still problem:
e Adversary may have special purpose hardware
= Can eval much faster than you can (50,000x)

What Hash Function to Use

Memory-hard functions: functions that require a lot
of memory to compute

* As far as we know, no special purpose memory

e Attacker doesn’t gain advantage using special
purpose hardware

Examples: Scrypt, Argon?2i

