
COS 433: Cryptography Princeton University
Homework 5 Due: November 10, 2020, 11:59pm AoE

Homework 5

1 Problem 1 (15 points)

(a) Show that the original version of the decisional Diffie Hellman problem that we
saw in class is easy. That is, fix a prime p. You are given

(g, ga mod p, gb mod p, h)

where g is a random generator of Z∗p, a, b← Zp−1, and h is either gab mod p or
gc mod p for a random c ∈ Zp−1.

Show how to tell whether h = gc mod p or h = gab mod p.

(b) Explain why, despite the above attack, the computational Diffie Hellman prob-
lem might still be hard

(c) Generalize the above attack as follows. Suppose G is a cyclic finite group of
order N , and suppose N has a small factor r. Show that the decisional Diffie
Hellman problem can be broken in time proportional to r (and polylogarithmic
in N).

(d) A number N is t-smooth if all of its prime factors are at most t. Let G be a
cyclic finite group of order N , where N is the product of distinct prime factors
and N is t-smooth for some small t. Show that the discrete log problem is easy
in G: given any g and ga, it is possible efficiently recover a, with a running time
that grows with t, but is otherwise logarithmic in N . The Chinese Remainder
Theorem will be helpful here.

(e) Show that the discrete log problem is easy over Z∗N for any smooth N . That
is, if N is t-smooth, you should give an algorithm for the discrete log over Z∗N
whose running time grows with t, but is otherwise logarithmic in N

Note that the N in part (e) is different from the N in part (d). In part (d), N
is the order of the group (the number such that gN = 1), whereas in (e), the
order of the group is something very different.

1



2 Problem 2 (15 points)

Consider the following commitment scheme, built from a group GrGen:

• Setup(): run (G, g, p) ← GrGen(λ). We will assume GrGen always produces a
prime p. Choose a random a ∈ Zp, and compute h = ga ∈ G. The commitment
key is k = (g, h).

• Com((g, h),m; r): We will assume the message space is Zp. Output gmhr, where
r is a random element in Zp.

(a) Show that the scheme is perfectly hiding.

(b) Show that the scheme is computationally binding, assuming the discrete log
problem is hard for G.

3 Problem 3 (20 points)

Let N = pq be the product of two primes. In this problem, we will see that, in
addition to p and q being large, it is important that p− 1 and q− 1 have large prime
factors.

(a) Suppose you know an integer r that is a multiple of p−1, but not q−1. Explain
how to factor N . (Hint: what happens when you compute xr for an integer r?)

(b) Suppose p− 1 is t-smooth (recall that this means all of the factors of p− 1 are
at most t). Explain how to compute an integer r that is a multiple of p − 1.
Your r should be no larger than about pt (so its bit length is at most about
t log2 p), and should take time polynomial in t and log2 p to compute.

(c) You are not quite done, as your multiple r might also be a multiple of q − 1.
Explain how to detect this case.

(d) If your r is a multiple of both p−1 and q−1, then show how to derive a different
integer r′ that is a multiple of p− 1 but not q− 1, or vice versa. Assume p 6= q
(if p = q, we can easily factor by taking square roots).

One option to avoid this attack is to choose p, q to be safe primes, which means that
(p− 1)/2 and (q − 1)/2 are also prime. However, this is not actually necessary, as it
turns out that a random large prime p will, with high probability, have p− 1 not be
smooth.

2



4 Problem 4 (15 points)

Here, you will show that computing discrete logs mod a composite integer N = pq
is as hard as factoring N . In other words, you are given an algorithm A such that
given g, h ∈ Z∗N , A efficiently computes an integer x such that gx mod N = h. (Note
that in general Z∗N is not cyclic, so the discrete log is not guaranteed to exist. The
algorithm for discrete logs is only guaranteed to work when the discrete log exists).
You may assume A finds a discrete log with probability 1 when it exists; there is no
guarantee that the x outputted by A will lie in any particular range. Show that given
A, you can factor N .

To help you, here are some hints:

• Consider running A(g, h = gy) for a random g ∈ Z∗N , and where y is uniform in
[0, 2N ]. Let x be the output of A. Show that y 6= x with noticeable probability,
no matter what A does.

• When x 6= y, what relationship must x and y satisfy?

• Can you extend the above to compute the order of g, for any g ∈ ZN∗. Consider
running A several times on the same g but different h’s.

• Finally, if you could compute the order for any g ∈ Z∗N , how does this let you
factor N?

5 Problem 5 (10 points)

Let G be a group of prime order q. Show that the discrete log problem can be
solved in time O(

√
q). To do so, conisder the hash function H : Z2

q 7→ G defined as
H(x, y) = gx × hy, where h = ga for an unknown discrete log a 1. Explain how to
use the birthday attack on H to compute a in time O(

√
q).

1This is like the hash function we saw in class, but abstracted to work with general groups

3


	Problem 1 (15 points)
	Problem 2 (15 points)
	Problem 3 (20 points)
	Problem 4 (15 points)
	Problem 5 (10 points)

