COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2018

Previously on COS 433...

Confusion/Diffusion Paradigm

~ Round

Substitution Permutation Networks

" g g g B e - Round ey
o { |81 [(&[5 8]

—
AN AN L) AN AN AN
\L/ \L/ \L/ \/ \/ \L/

Potentially
different

Final key
mixing

Designing SPNs

Avalanche Affect:
* Need S-boxes and mixing permutations to cause
every input bit to “affect” every output bit

One way to guarantee this:

* Changing any bit of S-box input causes at least 2
bits of output to change

* Mixing permutations send outputs of S-boxes into
at least 2 different S-boxes for next round

* Sufficiently many rounds are used

* At least how many rounds should be used?

Linearity?

Can S-Boxes be linear?
* That is, S(X,) © S(x;) = S(x,®x,)?

AES

State = 4x4 grid of bytes

AES

One fixed S-box, applied to each byte
* Step 1: multiplicative inverse over finite field Fg

 Step 2: fixed affine transformation

* Implemented as a simple lookup table

AES

Diffusion (not exactly a P-box):
 Step 1: shift rows
e Step 2: mix columns

AES

Shift Rows:

AES

Mix Columns
* Each byte interpreted as element of [Fg
* Each column is then a length-4 vector

* Apply fixed linear transformation to each column
r N

= X

AES

Number of rounds depends on key size
* 128-bit keys: 10 rounds
* 192-bit keys: 12 rounds
* 256-bit keys: 14 rounds

Key schedule:

* Won’t describe here, but involves more shifting, S-
boxes, etc

e Can think of key schedule as a weak PRG

Today

Feistel Networks

Attacks on block ciphers and PRFs

Feistel Networks

Feistel Networks

Designing permutations with good security
properties is hard

What if instead we could built a good permutation
from a function with good security properties...

Feistel Network

Convert functions into permutations

I
K

F public

;F< k secret

Can this possibly give a secure PRP?

Feistel Network

Convert functions into permutations

F: round function
Ko.K,: round keys

Feistel Network

Depending on specifics of round function, different

number of rounds may be necessary
* Number of rounds must always be at least 3

* (Need at least 4 for a strong PRP)

* Maybe need even more for weaker round functions

Luby-Rackoftf

3- or 4-round Feistel where round function is a PRF

/Theorem: If F is a secure PRF, then 3 rounds of Feistel\
(with independent round keys) give secure PRP. 4
\rounds give a strong PRP

* Proof non-trivial, won’t be covered in this class

Limitations of Feistel Networks

Turns out Feistel requires block size to be large
* If number of queries ~2blocksize/2 " can attack

Format preserving encryption:

* Encrypted data has same form as original
* E.g. encrypted SSN is an SSN

e Useful for encrypting legacy databases

Sometimes, want a very small block size

Constructing Round Functions

ldeally, “random looking” functions

Similar ideas to constructing PRPs
e Confusion/diffusion
* SPNs, S-boxes, etc

Key advantage is that we no longer need the
functions to be permutations
* S-boxes can be non-permutations

DES

Block size: 64 bits
Key size: 56 bits
Rounds: 16

DES

Key Schedule:
* Round keys are just 48-bit subsets of master key

Round function:
* Essentially an SPN network

DES S-Boxes

8 different S-boxes, each
e 6-bit input, 4-bit output
* Table lookup: 2 bits specify row, 4 specify column

* Each row contains every possible 4-bit output
* Changing one bit of input changes at least 2 bits of
output

DES History

Designed in the 1970’s

* At IBM, with the help of the NSA

e At the time, many in academia were suspicious of
NSA’s involvement

* Mysterious S-boxes
* Short key length

* Turns out, S-box probably designed well

e Resistant to “differential cryptanalysis”
 Known to IBM and NSA in 1970’s, but kept secret

* Essentially only weakness is the short key length
* Maybe secure in the 1970’s, definitely not today

DES Security Today

Seems like a good cipher, except for its key length
and block size

What’s wrong with a small block size?

* Remember for e.g. CTR mode, IV is one block

* If two identical IV’s seen, attack possible

* After seeing g ciphertext, probability of repeat IV is
roughly q2/2block length

* Attack after seeing = billion messages

3DES: Increasing Key Length

3DES key = Apply DES three times with different keys
Ko Ky K,

—> DES —> DEs' —> DES —>

Why three times?

* Next time: “meet in the middle attack” renders
2DES no more secure than 3DES

Why inverted second permutation?

Attacks on block ciphers

Brute Force Attacks

Suppose attacker is given a few input/output pairs

Likely only one key could be consistent with this
input/output

Brute force search: try every key in the key space,
and check for consistency

Attack time: 2key length

Insecurity of 2DES

Ko K,

—> DES —> DES —>

DES key length: 56 bits
2DES key length: 112 bits
Brute force attack running time: 2112

Meet In The Middle Attacks

For 2DES, can actually find key in 2°° time
* Also =2°° space

Ko Ky

m —> DES —> DES —> C

\,
is

Meet In The Middle Attacks
K,

DES! «<— C

k, |d = DES(K,,m)

0 69
1 10
2 86
3 49 D
4 99
5 08

Meet In The Middle Attacks

Complexity of meet in the middle attack:

* Computing two tables: time, space 2x2key length

e Slight optimization: don’t need to actually store
second table

On 2DES, roughly same time complexity as brute
force on DES

MITM Attacks on 3DES

MITM attacks also apply to 3DES...

Ko K, K2

m—> DES —> DES —> DES —> C

MITM for 3DES

Ko Ky K

m —> DES —> DES DES! «— C
Ko K, |d = DES(Ko,m) K, |d = DES-!(K,,m)

0 0 52 0 69

0 1 93 1 10

. .. 03 2 86

5 6 96 3 49 >
5 7 20 4 99

5 8 49 D> 5 08

MITM for 3DES

No matter where “middle” is, need to have two keys

on one side
* Must go over 2112 different keys

Space?

While 3DES has 168 bit keys, effective security is 112
bits

Generalizing MITM

In general, given r rounds of a block cipher with t-bit
keys,

e Attack time: 21r/2

* Attack space: 212!

Brute Force vs. Generic Attacks

MITM attacks on iterated block ciphers are generic
 Attack exists independent of implementation

details of block cipher

However, still beats a brute force
* Doesn’t simply try every key

MITM Attacks

MITM attacks can also be applied to plain single
block ciphers

kmasfer
v

Key Schedule
\ \ \ M
Ko Ky Ky Ky

—> R —— R —m R —m R —

Can yield reasonable attacks if the key schedule
produces highly independent round keys

Time-Space Tradeoffs

MITM attack requires significant space

In contrast, brute force requires essentially no space,
but runs slower

Known as a time-space tradeoff

Another Time-Space Trade-off Example

Given y=F(k,x), find x
* Allowed many queries to F(k,x) oracle
(That is, standard block cipher oracle)

e Assume |k| >> Ix|

Option 1:
* Brute force search over entire domain looking for X
* Time: 2!
* Space: 1

Another Time-Space Trade-off Example

Given y=F(Kk,x), find x
* Allowed many queries to F(k,x) oracle
(That is, standard block cipher oracle)

e Assume |k| >> Ix|

Option 2: Preprocessing

* Before seeing Yy, compute giant table of (x,F(K,x))
pairs, sorted by F(K,x)

* Preprocessing Time: 2!

* Space: 2!

* Online time: ?

Option 3: Hellman’s Attack

For simplicity, assume F(k,®) forms a cycle covering

entire domain
- §0, F(k,0), F(k, F(k,0)), F(k, F(k, F(k,0))),..} = X

In preprocessing stage:
* Attacker iterates over entire cycle, saving every tth
term in a table (x,,...,Xy/+) Where N=2!

Option 3: Hellman’s Attack

Option 3: Hellman’s Attack

y=F(k,x)

Option 3: Hellman’s Attack

y=F(k,x)

Option 3: Hellman’s Attack

y=F(k,x)

Option 3: Hellman’s Attack

y=F(k,x)

Option 3: Hellman’s Attack

X
y=F(k,x)

Option 3: Hellman’s Attack

Preprocessing Time: N=2!
Space: N/t
Online Time: t

Time-space tradeoff: space x online time = N

For non-cycles, attack is a bit harder, but nonetheless
possible

Differential Cryptanalysis

i i e g g g

Differential Cryptanalysis

Suppose there were A,,A, such that, for random key
K and random X;,X, where X,®X,= A,,
F'(k,x,)oF (k,x,)=A, with probability p>>2-!

* Call (A,,4,) a differential
* p is probability of differential

« 2-1is probability for random permutation

Differential Cryptanalysis
Attack:
* Choose many random pairs (X;,X,) s.t. X;9X,= A,

* Make queries on each X;, X,, obtaining y,,¥,

* For each round key guess k.,

* Use differentials to determine if guess was
correct

Differential Cryptanalysis
*????? (%01 %:1), (X02,%:2),

(X03,%:3), (%0%,%,%),

v v v

9|98J0 ddd

(Yol 1)), (Yo2.¥:2),
T T RUSAMASAY)

Guess k..’

Differential Cryptanalysis

Attack:

* Choose many random pairs (X;,X,) s.t. X;9X,= A,
* Make queries on each X;, X,, obtaining y,,Y,

* For each round key guess k.,

* Undo last round assuming K., obtaining (2,’,2,")
* Look for z,'®z," = A,
* If right guess, expect = p fraction

* If wrong guess, expect = 2-! fraction

Differential Cryptanalysis
*????? (%01 %:1), (X02,%:2),

(X03,%:3), (%0%,%,%),

v v v

b éa ‘ O (2',,2'), (2,2, 'z)
(Z Y' 3), (Z 0 1&)
v
(Yol 1)), (Yo2.¥:2),
" mwmmwm w03 Y:3), (Yot.vi4),

Guess k..’

Differential Cryptanalysis

So far, inefficient since we have to iterate over all 2!
possible round keys

Instead, we can learn K, byte by byte
* Guess 8 bits of k.. at a time

* [terate through all 28 possible values for those 8 bits
* Compute 8 bits of z,’,z,’, look for (portion of) differential

 Which bits to choose?

Differential Cryptanalysis
*????? (%01 %:1), (X02,%:2),

(X03,%:3), (%0%,%,%),

v v v

9|98J0 ddd

(Yol 1)), (Yo2.¥:2),
T T RUSAMASAY)

Guess k..’

Differential Cryptanalysis

Extending to further levels:
* One K. is known, can uncompute last layer
* Now perform same attack on round-reduced cipher

* Repeat until all round keys have been found

Finding Differentials

So far, assumed differential given

How do we find it?
e Can’t simply brute force all possible differentials

Finding Differentials

Solution: look for differentials in S-boxes
* Only 28 possible differences, so we can actually
look for all possible differentials

* Then trace differentials through the evaluation
* Key mixing does not affect differentials
 Diffusion steps just shuffle differential bits

Differential Cryptanalysis

5, 1000010000 J 0000] 0000 0000
\ 4 v

v v v v
4, | 0000 J 0000 [0000 | 0000 [0000

0000 § 0000 § 0000

0,
2

0000 § 0000 § 0000

Differential Cryptanalysis in Practice

Used to attack real ciphers
* FEAL-8, proposed as alternative to DES in 1987

* requires just 1000 chosen input/output pairs, 2 minutes
computation time in 1990’s

* Also theoretical attacks on DES
* Requires 2%/ chosen input/output pairs
* Very difficult to obtain in real world applications
* Therefore, DES is still considered relatively secure
* Small changes to S-boxes in DES lead to much better

differential attacks

Linear Cryptanalysis

High level idea: look for linear relationships that hold
with too-high a probability
* E.8. X;9X59X79Y39Y®Y,9Y, = O

Can show that if happen with too-high probability,
can completely recover key

Important feature: only requires known plaintext as
opposed to chosen plaintext

* Much easier to carry out in practice

* Ex: DES can be broken with 243 input/output pairs

Block Cipher Design

S-boxes are designed to minimize differential and

linear cryptanalysis

e Cannot completely remove differentials/linear
relations, but can minimize their probability

Increasing number of rounds helps
* Likelihood of differential decreases each round

Related Key Attacks

Properly designed crypto will always use random,
independent keys for every application

However, sometimes people don’t follow the rules

Relateo
similar

(

key attack: have messages encrypted under
Keys

Recall RC4 used for encryption, RC4(IV,k))

For AES 256, can attack in 2119 space/time

Holiwudd Criptoe!

\

Device is top of the line.

AES cipher locks, brute force
decryption is the only way.... It's
effective, but slow. Very slow.

/

