COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously on COS 433...

Pseudorandom Permutations

(also known as block ciphers)

Functions that “look like” random permutations

Syntax:

* Key space K (usually {0,1}})

« Domain=Range= X (usually {0,1}")
* Function F:K x X-2>X

* Function F1:K x X=>X

Correctness: V K,x, F1(k, F(k, x)) = x

Pseudorandom Permutations

Security:

Pseudorandom Permutations

Security: b=0

1

Challenger kK € K

[

Pseudorandom Permutations

Security:

PRF Security Definition

Gefinition: F is a (t,9,€)-secure PRP if, for all ﬁ
running in time at most t+ and making at most q
gueries,

| Pr{1€PRF-Expo(X)]
- pri1eprr-Exp(}) 1] <«

(&

~

/

‘Theorem: A PRP (F,F-1) s (t.q,€)-secure iff F is \
\(tqﬁ"'qz/zl)(l)-secure as a PRF

Counter Mode (CTR)

F

F k-

F k-

F k-

F k-

K>

Electronic Code Book (ECB)

Il B I Il e
¥ ¥ ¥ ¥ ¥

k- F k- F k- F k- F k- F

v v v v v
B Bl D I e

Cipher Block Chaining (CBC) Mode

T T T T T
Bnsaclece:

(A

)

l
)

(For now, assume all messages are multiples of the block length)

Today

A few more modes of operation

How to construct block ciphers

Output Feedback Mode (OFB)

1

-

» F
(VAN ,

v
k- F

—

v
k- F

—F

Turn block cipher into stream cipher

OFB Decryption

What happens if a block is lost in
transmission?

OFB decryption:

v v v v
k- F |k~ F |k- F |k~ F

O o o P

v \ 4 \4 \4

Same goes for CTR mode

Cipher Feedback (CFB)

1

k> F
|v ,

(VA

v
k- F

-

v
k- F

-

Turn block cipher into self-synchronizing stream cipher

CFB Decryption

What happens if a block is lost in

transmission?

CFB decryption:
v v
k- F |k~ F
D1 €

k»>

v v
F |k F

D— I @ ¢

D—

v \ 4 \ 4 v
[T [T

What happens if a block is lost in
transmission?

What about CBC?

(HVAN, D BN I e e
o T B

k- FL k- FL k- F (ke P (ke P

S T (e G

(I I B BN)

Security of OFB, CFB modes

Security very similar to CBC

Define 4 hybrids

* 0: encrypt left messages

e 1: replace PRP with random permutation
e 2: encrypt right messages

* 3: replace random permutation with PRP

0,1 and 2,3 are indistinguishable by PRP security

1,2 are indistinguishable since ciphertexts are
essentially random

Strong PRPs

b=0

1

Challenger K € K

Strong PRPs

b=1

1

Challenger He&perms(X,X)

L e y € H(x)

.

'Theorem: If (FF-1) is a strong PRP, then so is

(F-,F)

~

PRPs vs PRFs

In practice, PRPs are the central building block of
most crypto

* Also PRFs

* Can build PRGs

* Very versatile

Constructing block ciphers

Difficulties

2" Permutations on n-bit blocks
= =n2" bits to write down random perm.

Reasonable for very small n (e.g. n<20), but totally
infeasible for large n (e.g. n=128)

Challenge:
* Design permutations with small description that

“behave like” random permutations

Difficulties

For a random permutation H, H(x) and H(x’) are
(essentially) independent random strings
e Even if X and X’ differ by just a single bit

Therefore, for a random key K, changing a single bit
of X should “affect” all output bits of F(K,x)

/Definition: For a function H:{0,1}" > {0,1}", we \
say that bit i of the input affects bit j of the output
if:

For a random Xy, ..., X;_1,Xi,1, -, X, if we let
y:H(Xl...Xi_IOXi+1...Xn) and
Z:H(Xl oo Xi_IIXi+1 oo Xn)

Qhen y; # Z; with probability = 1/2 /

‘Theorem: If (F,F-!) is a secure PRP, then with (with
“high” probability over the key K), for the function

F(k,®), every bit of input affects every bit of output
N y,

Proof:

* For random permutations this is true

* If bit i did not affect bit j, we can construct an
adversary that distinguishes F from random

Confusion/Diffusion Paradigm

Confusion/Diffusion Paradigm

Goal: build permutation for large blocks from
permutations for small blocks

* Small block perms can be made truly random

* Hopefully result is pseudorandom

Confusion/Diffusion Paradigm

First attempt: break blocks into smaller blocks, apply
smaller permutation blockwise

Big blocks (e.g. 128 bits)
A
[\
Small blocks (e.g. 8 bits)

S
P N —
£, f f £, £ £

- — 11

Key: description of f;, f,,...

Confusion/Diffusion Paradigm

P I I I E— —
£, f f £, £ £
=TT

Is this a secure PRP?

* Key size: =(8x28)x(128/8) = 215, so reasonable
* Running time: a few table lookups, so efficient

* Security?

Confusion/Diffusion Paradigm

Second attempt: shuffle output bits

Diffusion

:|> Confusion

Is this a secure PRP?

* Key size: 21> + 128xLog 128 = 2!°
* Running time: a few table lookups

* Security?

Confusion/Diffusion Paradigm

Third Attempt: Repeat multiple times!

~ Round

Confusion/Diffusion Paradigm

While single round is insecure, we’ve made progress
e Each bit affects 8 output bits

With repetition, hopefully we will make more and
more progress

Confusion/Diffusion Paradigm

With 2 rounds,
* Each bit affects 64 output bits

With 3 rounds, all 128 bits are affected

Repeat a few more times for good measure

Limitations

Describing subs/perms requires many bits
* Key size for r rounds is approximately 2xr
* |deally want key size to be 128 (or 256)

ldea: instead, fix subs/perms
e But then what’s the key?

Substitution Permutation Networks

Variant of previous construction
* Fixed public permutations for confusion (called a
substitution box, or S-box)

* Fixed public permutation for diffusion (called a
permutation box, or P-box)

* XOR “round key” at beginning of each round

Substitution Permutation Networks

Round =

e oy ey g g g} Round key

Substitution Permutation Networks

g g g g e - Round ey
owa {81880 8]

Potentially
different

AN AN AN AN AN
\L/ \/ \/ \L/ \L/

Substitution Permutation Networks

" g g g B e - Round ey
o { |81 [(&[5 8]

—
AN AN L) AN AN AN
\L/ \L/ \L/ \/ \/ \L/

Potentially
different

Final key
mixing

Substitution Permutation Networks

To specify a network, must:

* Specify S-boxes

 Specify P-box

 Specify key schedule (how round keys are derived
from master)

Choice of parameters can greatly affect security

Designing SPNs

Avalanche Affect:
* Need S-boxes and mixing permutations to cause
every input bit to “affect” every output bit

One way to guarantee this:

* Changing any bit of S-box input causes at least 2
bits of output to change

* Mixing permutations send outputs of S-boxes into
at least 2 different S-boxes for next round

* Sufficiently many rounds are used

* At least how many rounds should be used?

Designing SPNs

For strong PRPs, need avalanche in reverse too

* Changing one bit of output of S box changes at
least 2 bits of input

* Mixing permutations take inputs for next round
from at least two different S-box outputs

Designing S-Boxes

Random?

e Let X,%x’ be two distinct 8-bit values

* Pr[S(x) and S(x’) differ on a single bit] = 8/255

e Call such x,x’ “bad”

* Pr{3 bad x,x'] = (1-8/255)"(%°) = 1

 Very high probability that some pair of inputs will
have outputs that differ on a single bit

Therefore, must carefully design S-boxes rather than
choose at random

Linearity?

Can S-Boxes be linear?
* That is, S(X,) © S(x;) = S(x,®x,)?

AES

State = 4x4 grid of bytes

AES

One fixed S-box, applied to each byte
* Step 1: multiplicative inverse over finite field Fg

 Step 2: fixed affine transformation

* Implemented as a simple lookup table

AES

Diffusion (not exactly a P-box):
 Step 1: shift rows
e Step 2: mix columns

AES

Shift Rows:

AES

Mix Columns
* Each byte interpreted as element of [Fg
* Each column is then a length-4 vector

* Apply fixed linear transformation to each column
r N

= X

AES

Number of rounds depends on key size
* 128-bit keys: 10 rounds
* 192-bit keys: 12 rounds
* 256-bit keys: 14 rounds

Key schedule:

* Won’t describe here, but involves more shifting, S-
boxes, etc

e Can think of key schedule as a weak PRG

Feistel Networks

Feistel Networks

Designing permutations with good security
properties is hard

What if instead we could built a good permutation
from a function with good security properties...

Feistel Network

Convert functions into permutations

I
K

F public

;F< k secret

Can this possibly give a secure PRP?

Feistel Network

Convert functions into permutations

F: round function
Ko.K,: round keys

Feistel Network

Depending on specifics of round function, different

number of rounds may be necessary
* Number of rounds must always be at least 3

* (Need at least 4 for a strong PRP)

* Maybe need even more for weaker round functions

Luby-Rackoftf

3- or 4-round Feistel where round function is a PRF

/Theorem: If F is a secure PRF, then 3 rounds of Feistel\
(with independent round keys) give secure PRP. 4
\rounds give a strong PRP

* Proof non-trivial, won’t be covered in this class

Limitations of Feistel Networks

Turns out Feistel requires block size to be large
* If number of queries ~2blocksize/2 " can attack

Format preserving encryption:

* Encrypted data has same form as original
* E.g. encrypted SSN is an SSN

e Useful for encrypting legacy databases

Sometimes, want a very small block size

Constructing Round Functions

ldeally, “random looking” functions

Similar ideas to constructing PRPs
e Confusion/diffusion
* SPNs, S-boxes, etc

Key advantage is that we no longer need the
functions to be permutations
* S-boxes can be non-permutations

DES

Block size: 64 bits

Key size: 56 bits
Rounds: 16 \

DES

Key Schedule:
* Round keys are just 48-bit subsets of master key

Round function:
* Essentially an SPN network

DES S-Boxes

8 different S-boxes, each
e 6-bit input, 4-bit output
* Table lookup: 2 bits specify row, 4 specify column

* Each row contains every possible 4-bit output
* Changing one bit of input changes at least 2 bits of
output

DES History

Designed in the 1970’s

* At IBM, with the help of the NSA

e At the time, many in academia were suspicious of
NSA’s involvement

* Mysterious S-boxes
* Short key length

* Turns out, S-box probably designed well

e Resistant to “differential cryptanalysis”
 Known to IBM and NSA in 1970’s, but kept secret

* Essentially only weakness is the short key length
* Maybe secure in the 1970’s, definitely not today

DES Security Today

Seems like a good cipher, except for its key length
and block size

What’s wrong with a small block size?

* Remember for e.g. CTR mode, IV is one block

* If two identical IV’s seen, attack possible

* After seeing g ciphertext, probability of repeat IV is
roughly q2/2block length

* Attack after seeing = billion messages

3DES: Increasing Key Length

3DES key = Apply DES three times with different keys
Ko Ky K,

—> DES —> DEs' —> DES —>

Why three times?

* Next time: “meet in the middle attack” renders
2DES no more secure than 3DES

Why inverted second permutation?

Attacks on block ciphers

Brute Force Attacks

Suppose attacker is given a few input/output pairs

Likely only one key could be consistent with this
input/output

Brute force search: try every key in the key space,
and check for consistency

Attack time: 2key length

Insecurity of 2DES

Ko K,

—> DES —> DES —>

DES key length: 56 bits
2DES key length: 112 bits
Brute force attack running time: 2112

Meet In The Middle Attacks

For 2DES, can actually find key in 2°° time
* Also =2°° space

Ko Ky

m —> DES —> DES —> C

\,
is

Meet In The Middle Attacks
K,

DES! «<— C

k, |d = DES(K,,m)

0 69
1 10
2 86
3 49 D
4 99
5 08

Meet In The Middle Attacks

Complexity of meet in the middle attack:

* Computing two tables: time, space 2x2key length

e Slight optimization: don’t need to actually store
second table

On 2DES, roughly same time complexity as brute
force on DES

MITM Attacks on 3DES

MITM attacks also apply to 3DES...

Ko K, K2

m—> DES —> DES —> DES —> C

MITM for 3DES

Ko Ky K

m —> DES —> DES DES! «— C
Ko K, |d = DES(Ko,m) K, |d = DES-!(K,,m)

0 0 52 0 69

0 1 93 1 10

. .. 03 2 86

5 6 96 3 49 >
5 7 20 4 99

5 8 49 D> 5 08

MITM for 3DES

No matter where “middle” is, need to have two keys

on one side
* Must go over 2112 different keys

Space?

While 3DES has 168 bit keys, effective security is 112
bits

Generalizing MITM

In general, given r rounds of a block cipher with t-bit
keys,

e Attack time: 21r/2

* Attack space: 212!

Brute Force vs. Generic Attacks

MITM attacks on iterated block ciphers are generic
 Attack exists independent of implementation

details of block cipher

However, still beats a brute force
* Doesn’t simply try every key

Next time

More attacks on block ciphers

Reminders

HW?2 due tomorrow

Project 1 due next week

