# COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

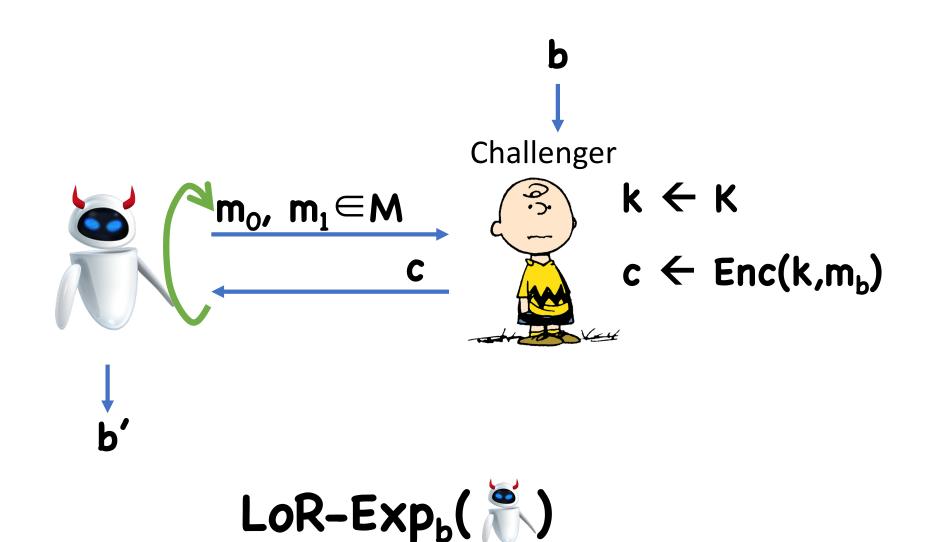
# Project 1 – 2nd Bonus

Still at 40 decrypts...

- Tristan Pollner and Zachary Stier
- Prinstun Criptoe (Heather Newman, Iris Rukshin, Jacob Wachspress)

# Previously on COS 433...

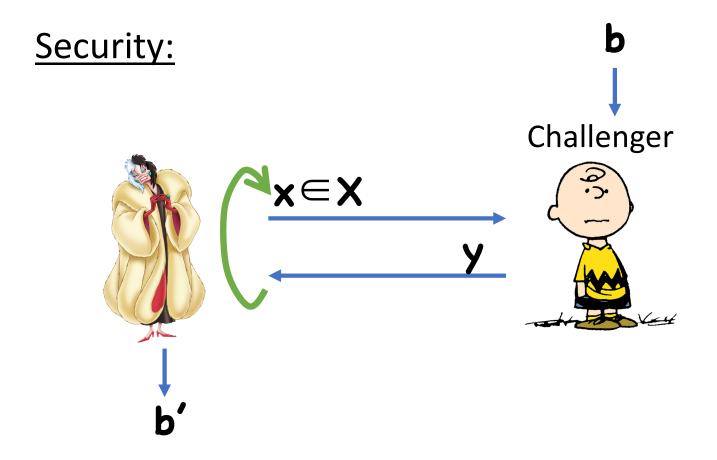
# Left-or-Right Experiment

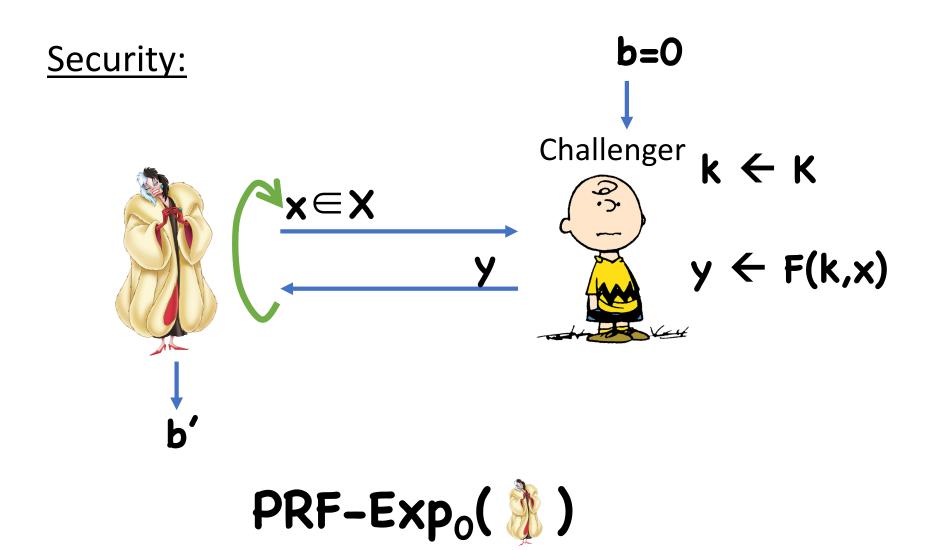


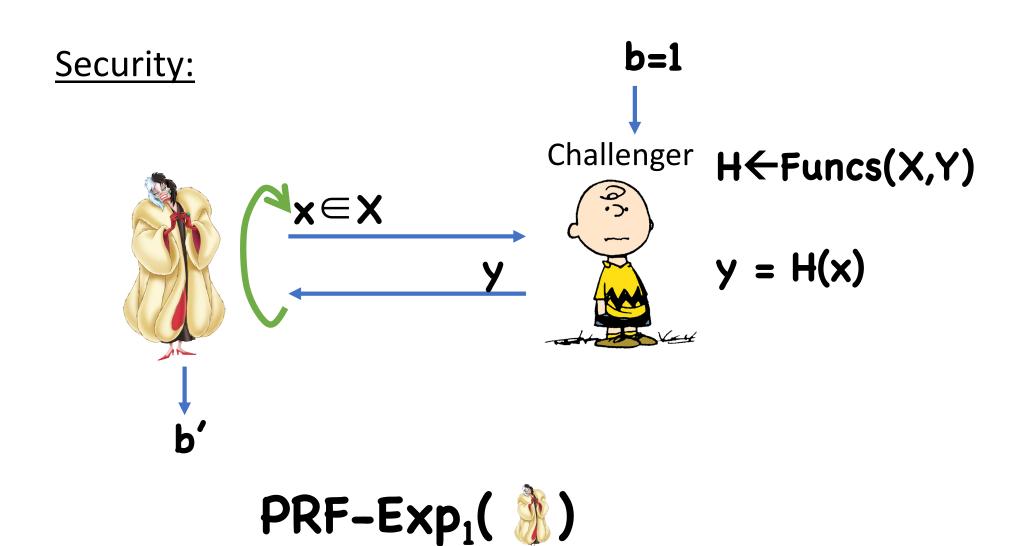
Functions that "look like" random functions

#### Syntax:

- Key space K (usually {0,1}<sup>λ</sup>)
- Domain X (usually {0,1}<sup>m</sup>)
- Co-domain/range Y (usually {0,1}<sup>n</sup>)
- Function **F:K** × X→Y







# Using PRFs to Build Encryption

#### Enc(k, m):

- Choose random r←X
- Compute  $y \leftarrow F(k,r)$
- Compute c←y⊕m
- Output (r,c)

#### Correctness:

- y'=y since **F** is deterministic
- $m' = c \oplus y = y \oplus m \oplus y = m$

#### Dec(k, (r,c)):

- Compute  $y' \leftarrow F(k,r)$
- Compute and output m'←c⊕y'

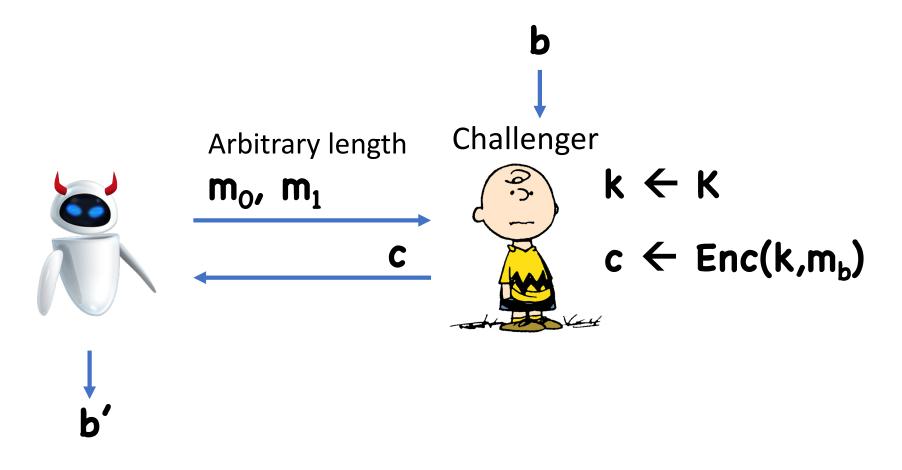
# Today

Security for arbitrary-length messages

**Block ciphers** 

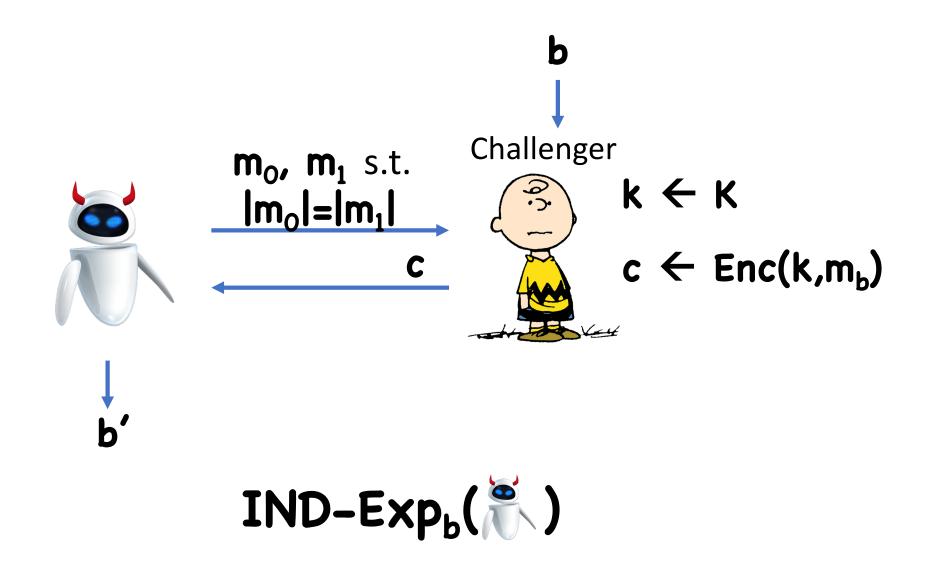
Modes of operation

## Security for Arbitrary-Length Messages



Impossible in general to hide message length

## Security for Arbitrary-Length Messages



**Theorem:** Given any CPA-secure (**Enc,Dec**) for fixed-length messages (even single bit), it is possible to construct a CPA-secure (**Enc,Dec**) for arbitrary-length messages

#### Construction

Let (Enc, Dec) be CPA-secure for single-bit messages

```
Enc'(k,m):

For i=1,..., |m|, run c_i \leftarrow \text{Enc}(k, m_i)

Output (c_1, ..., c_{|m|})

Dec'(k, (c_1, ..., c_l)):

For i=1,..., l, run m_i \leftarrow \text{Dec}(k, c_i)

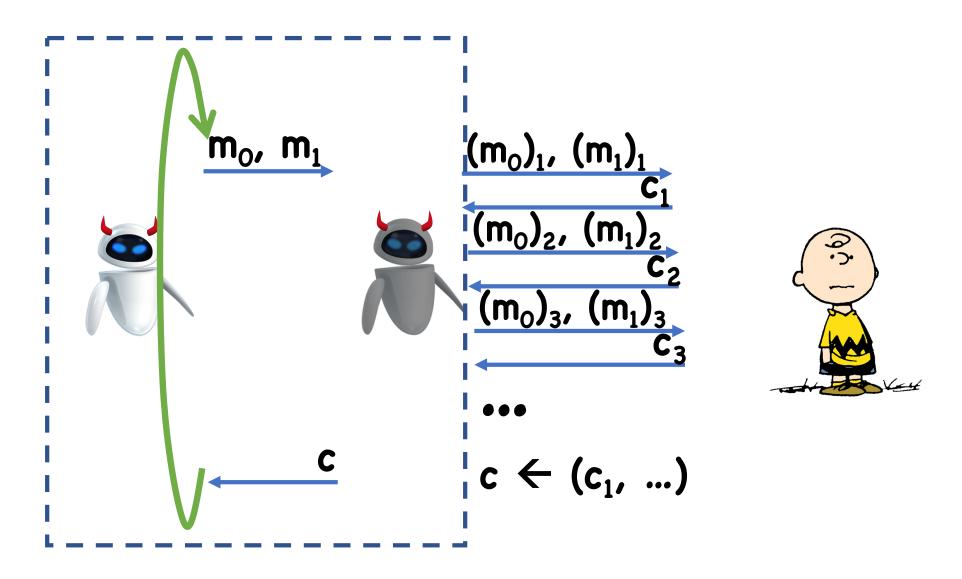
Output m = m_1 m_2 ..., m_l
```

Theorem: If (Enc,Dec) is  $(t,q,\epsilon)$ -LoR secure, then (Enc',Dec') is  $(t-t',q/n,\epsilon)$ -LoR secure for messages of length up to n

Assume toward contradiction that there exists a running in time at most **t-t'**, making **q/n** LoR queries on messages of length up to **n**, which has advantage **\varepsilon** in breaking **(Enc',Dec')** 

Construct that has advantage ε in breaking (Enc,Dec)

# Proof (sketch)



# Better Constructions Using PRFs

In PRF-based construction, encrypting single bit requires  $\lambda+1$  bits

⇒ encrypting **l**-bit message requires ≈λ**l** bits

Ideally, ciphertexts would have size ≈λ+l

# Solution 1: Add PRG/Stream Cipher

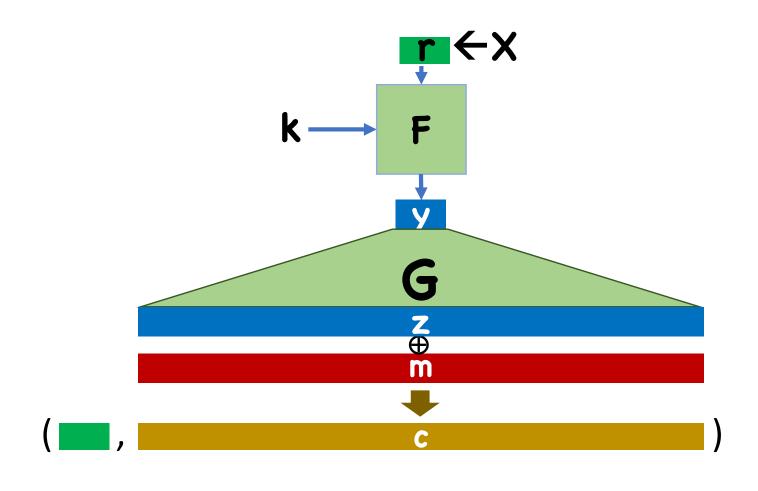
#### Enc(k, m):

- Choose random r←X
- Compute  $y \leftarrow F(k,r)$
- Get  $|\mathbf{m}|$  pseudorandom bits  $\mathbf{z} \leftarrow \mathbf{G}(\mathbf{y})$
- Compute c←z⊕m
- Output **(r,c)**

#### Dec(k, (r,c)):

- Compute  $y' \leftarrow F(k,r)$
- Compute  $z' \leftarrow G(y')$
- Compute and output m'←c⊕z'

# Solution 1: Add PRG/Stream Cipher



## **Proof Sketch**

```
Hybrid 0: (m_0, m_1) \rightarrow (r, G(F(k,r)) \oplus m_0)

Hybrid 1: (m_0, m_1) \rightarrow (r, G(s) \oplus m_0)

Hybrid 2: (m_0, m_1) \rightarrow (r, t \oplus m_0)

Hybrid 3: (m_0, m_1) \rightarrow (r, t \oplus m_1)

Hybrid 4: (m_0, m_1) \rightarrow (r, G(s) \oplus m_1)
```

Hybrid 5:  $(m_0,m_1) \rightarrow (r, G(F(k,r)) \oplus m_1)$ 

# Solution 2: Counter Mode

#### Enc(k, m):

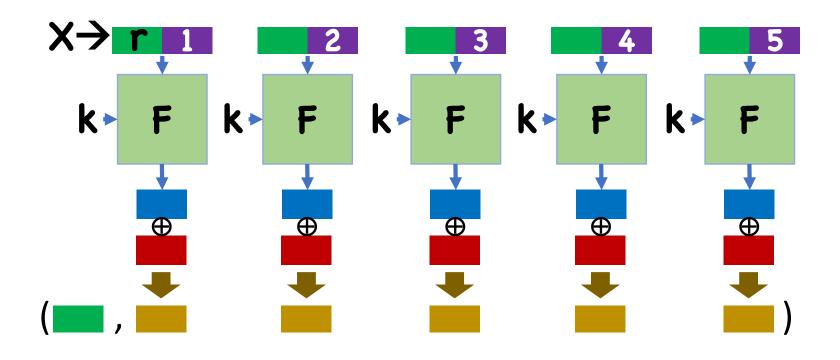
- Choose random  $\mathbf{r} \leftarrow \{0,1\}^{\lambda/2}$  Write  $\mathbf{i}$  as  $\lambda/2$ -bit string
- For **i=1,...,|m|**,
  - Compute  $y_i \leftarrow F(k,r||i)^T$
  - Compute  $c_i \leftarrow y_i \oplus m_i$
- Output (r,c) where  $c=(c_1,...,c_{lml})$

#### Dec(k, (r,c)):

- For **i=1,...,l**,
  - Compute  $y_i \leftarrow F(k,r||i)$
  - Compute  $\mathbf{m}_i \leftarrow \mathbf{y}_i \oplus \mathbf{c}_i$
- Output m=m<sub>1</sub>,...,m<sub>l</sub>

Handles any message of length at most  $2^{\lambda/2}$ 

# Solution 2: Counter Mode



# Block ciphers/Pseudorandom Permutations

# Pseudorandom Permutations (also known as block ciphers)

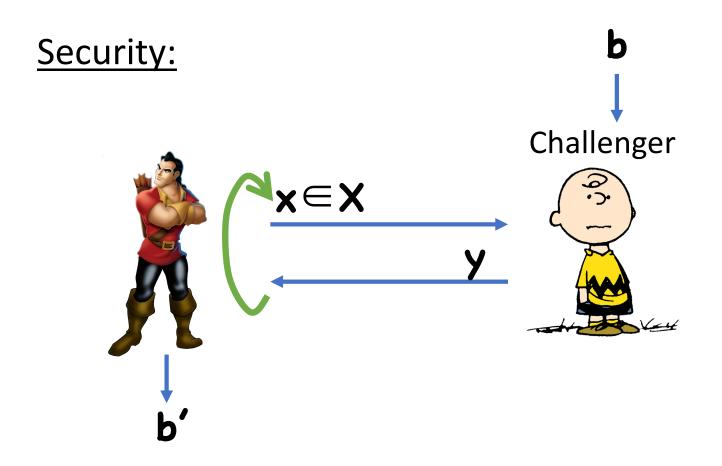
Functions that "look like" random permutations

#### Syntax:

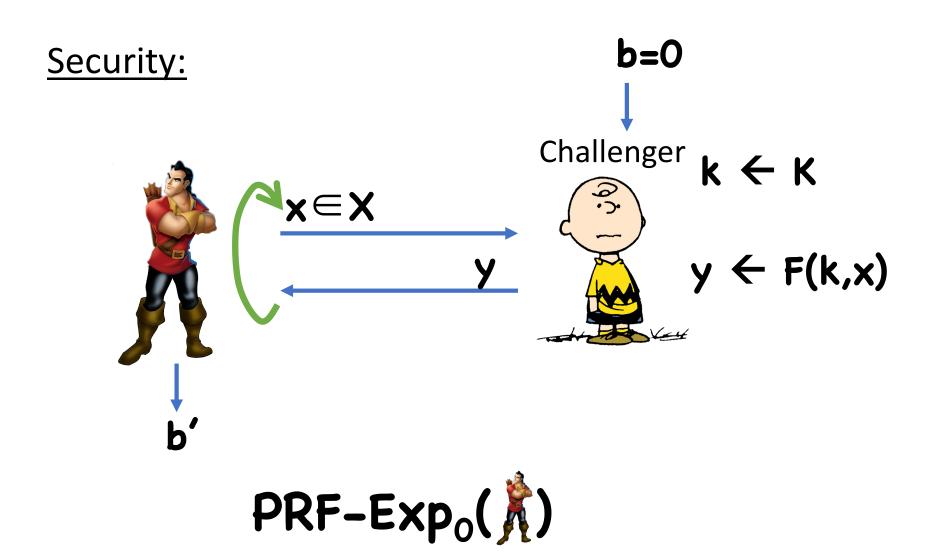
- Key space **K** (usually  $\{0,1\}^{\lambda}$ )
- Domain=Range= X (usually {0,1}<sup>n</sup>)
- Function **F**:K  $\times X \rightarrow X$
- Function  $F^{-1}:K \times X \rightarrow X$

Correctness:  $\forall k,x, F^{-1}(k, F(k, x)) = x$ 

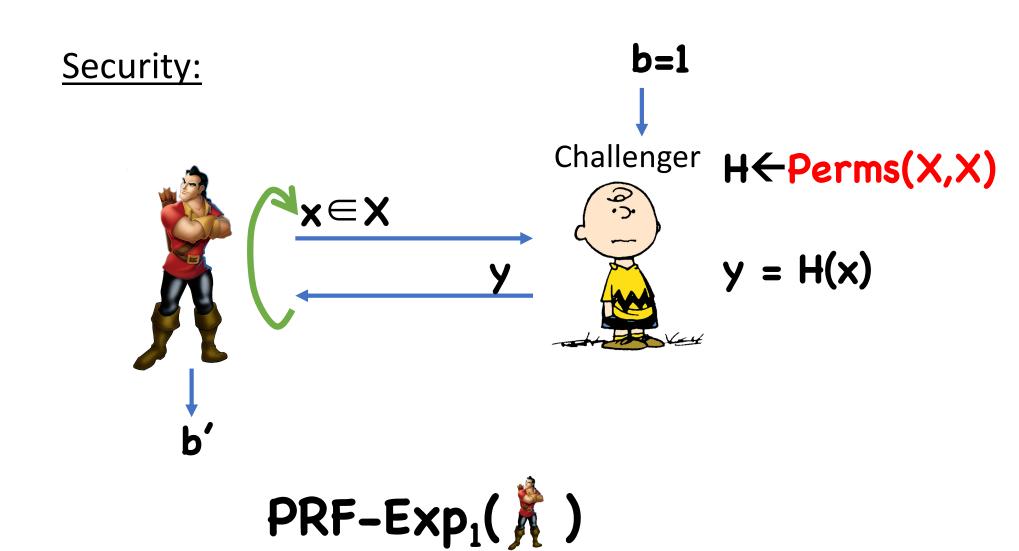
# Pseudorandom Permutations



#### Pseudorandom Permutations



#### Pseudorandom Permutations



# PRF Security Definition

**Definition:**  $\mathbf{F}$  is a  $(\mathbf{t}, \mathbf{q}, \boldsymbol{\varepsilon})$ -secure PRP if, for all  $\mathbf{r}$  running in time at most  $\mathbf{t}$  and making at most  $\mathbf{q}$  queries,

Pr[1
$$\leftarrow$$
PRF-Exp<sub>0</sub>( $\nearrow$ )]
- Pr[1 $\leftarrow$ PRF-Exp<sub>1</sub>( $\nearrow$ )]  $\leq \epsilon$ 

Theorem: A PRP  $(F,F^{-1})$  is  $(t,q,\varepsilon)$ -secure iff F is  $(t,q,\varepsilon+q^2/2|X|)$ -secure as a PRF

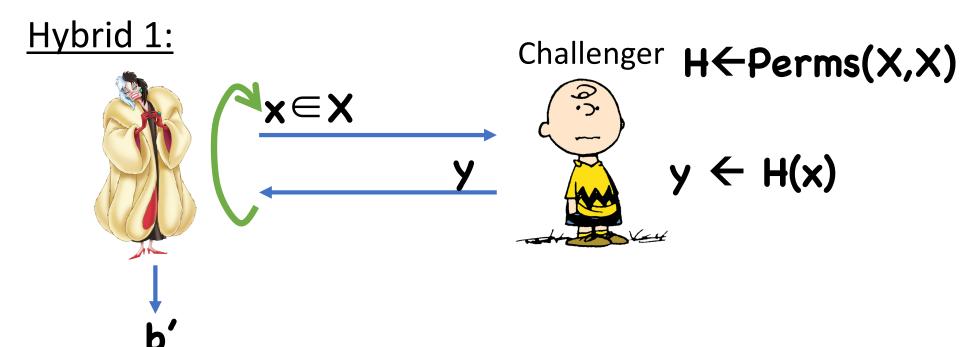
Secure as PRP  $\Rightarrow$  Secure as PRF

• Assume , hybrids

# Hybrid 0: Challenger k ← K y ← F(k,x)

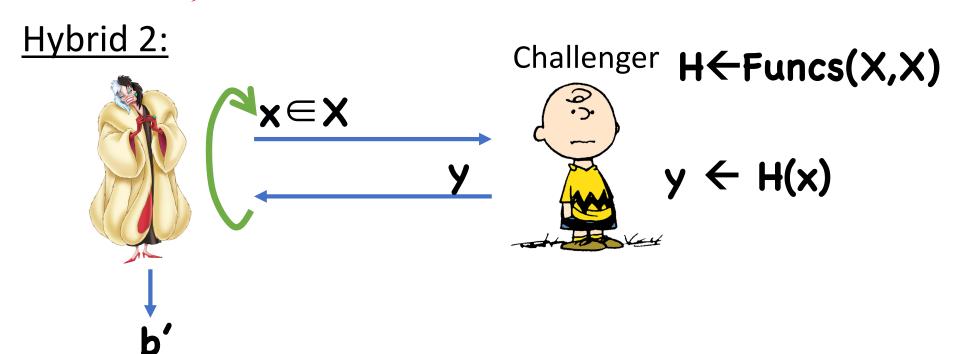
Secure as PRP  $\Rightarrow$  Secure as PRF

• Assume , hybrids



Secure as PRP  $\Rightarrow$  Secure as PRF

• Assume , hybrids



Secure as PRP  $\Rightarrow$  Secure as PRF

• Assume , hybrids

Hybrids 0 and 1 are indistinguishable by PRP security

Hybrids 1 and 2?

- In Hybrid 1, 🐧 sees random **distinct** answers
- In Hybrid 2, 3 sees random answers
- Except with probability ≈q²/2|X|, random answers will be distinct anyway

Secure as PRF  $\Rightarrow$  Secure as PRP

• Assume , hybrids

Proof essentially identical to other direction

Suppose (F,F<sup>-1</sup>) is a secure PRP

Is (F<sup>-1</sup>,F) also a secure PRP?

### Counter Example

Suppose  $(F,F^{-1})$  is a secure PRP. Assume  $X=\{0,1\}^n$ 

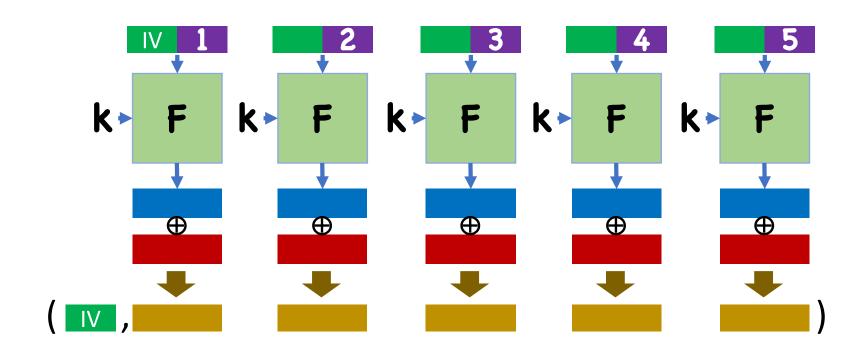
Define (H,H<sup>-1</sup>) as follows:

- Given k, let i be smallest input such that F<sup>-1</sup>(i) begins with a O
- Let  $x_0 = F^{-1}(0^n), x_1 = F^{-1}(i)$

• 
$$H(k,x) = \begin{cases} 0^n & \text{if } x = x_1 \\ i & \text{if } x = x_0 \\ F(k,x) & \text{otherwise} \end{cases}$$

# How to use block ciphers for encryption

### Counter Mode (CTR)



### Electronic Code Book (ECB)

#### Enc(k, m):

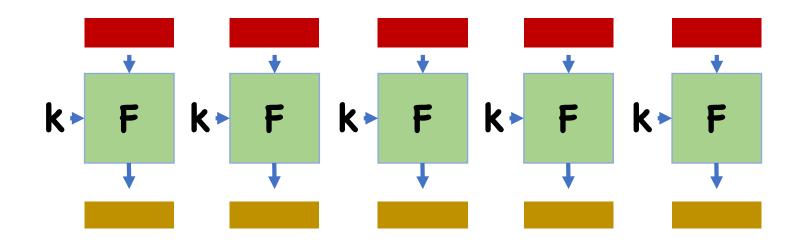
- Break m into t blocks m; of n bits
- For each block  $m_i$ , let  $c_i = F(k, m_i)$
- Output  $c = (c_1, ..., c_t)$

#### **Dec(k, c):**

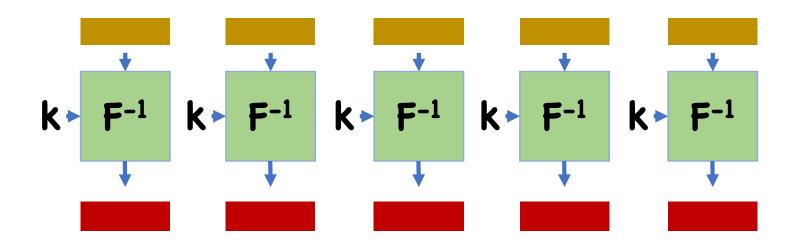
- Break c into t blocks c; of n bits
- For each block  $c_i$ , let  $m_i = F^{-1}(k, c_i)$
- Output  $m = (m_1, ..., m_t)$

substitution cipher for **n**-bit alphabet

### Electronic Code Book (ECB)



### **ECB** Decryption



### Security of ECB?

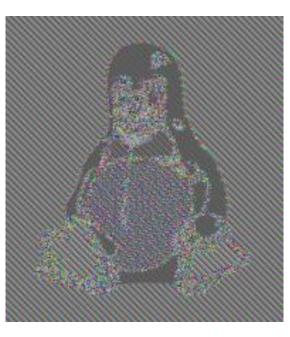
Is ECB mode CPA secure?

Is ECB mode *one-time* secure?

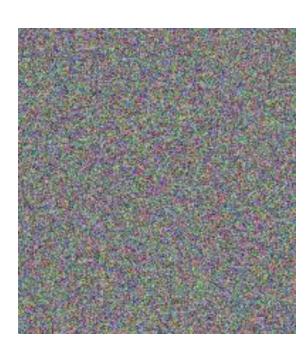
### Security of ECB



**Plaintex** 

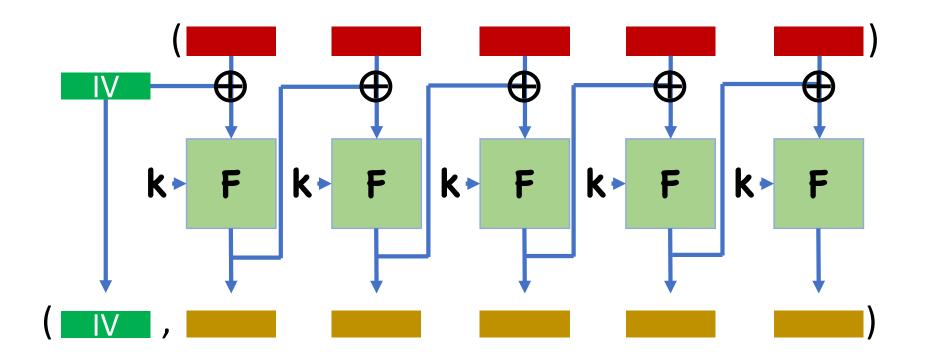


Ciphertext



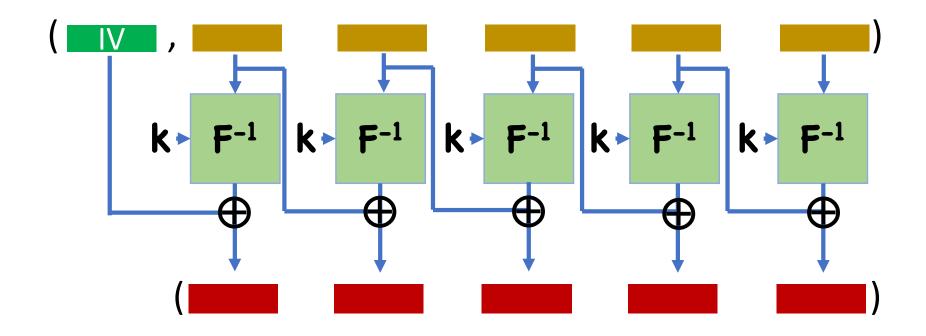
Ideal

### Cipher Block Chaining (CBC) Mode



(For now, assume all messages are multiples of the block length)

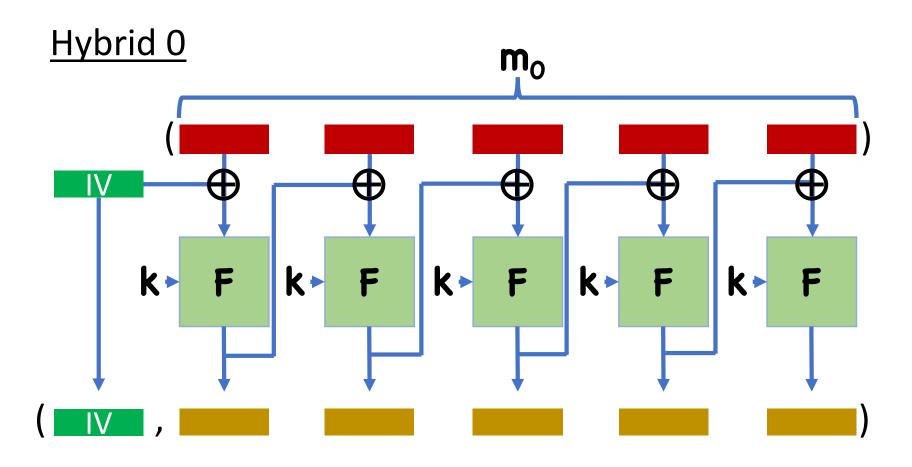
### **CBC Mode Decryption**

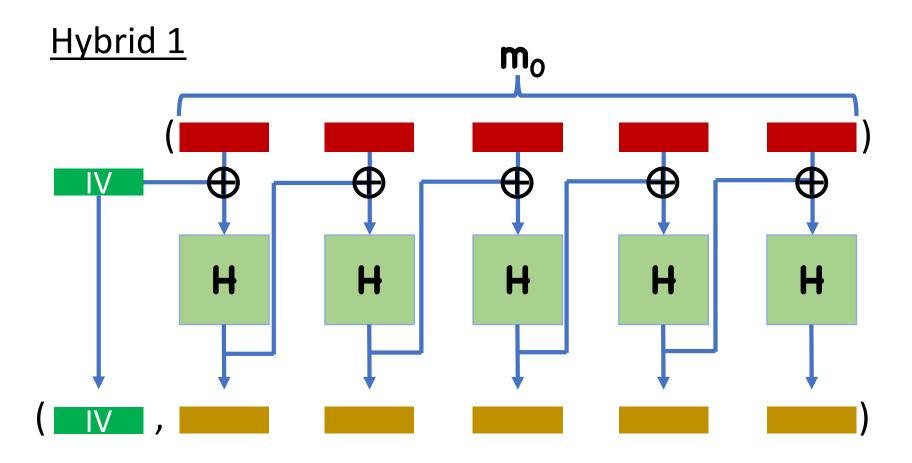


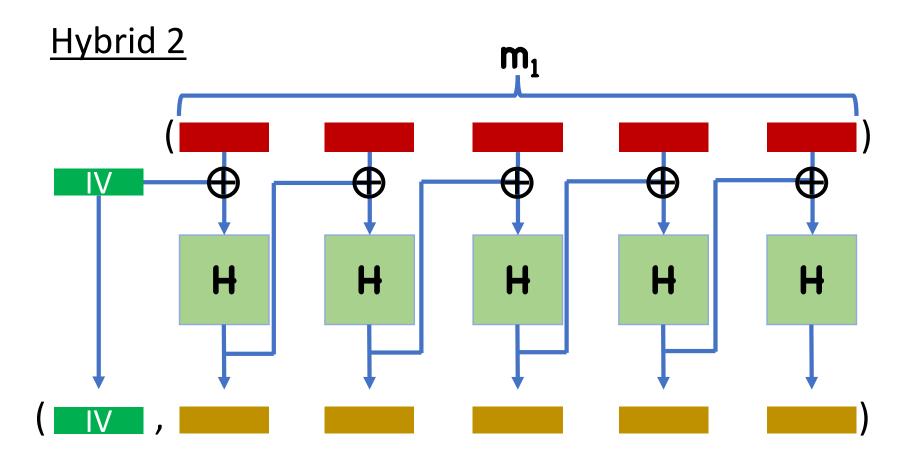
Theorem: If  $(F,F^{-1})$  is a  $(t,q,\epsilon)$ -secure pseudorandom permutation, then CBC mode encryption is  $(t-t', q/n, 2\epsilon+q^2/|X|)$  CPA secure for messages of length up to n.

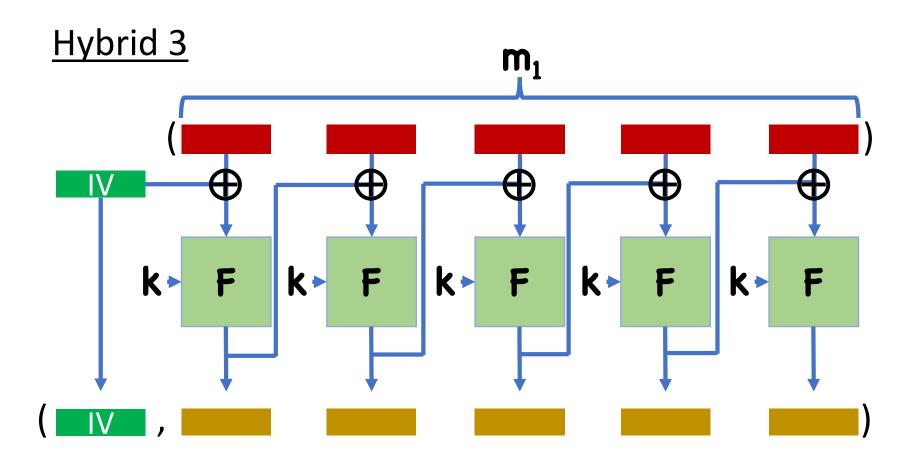
Assume toward contradiction an adversary \*\* for CBC mode

Hybrids...







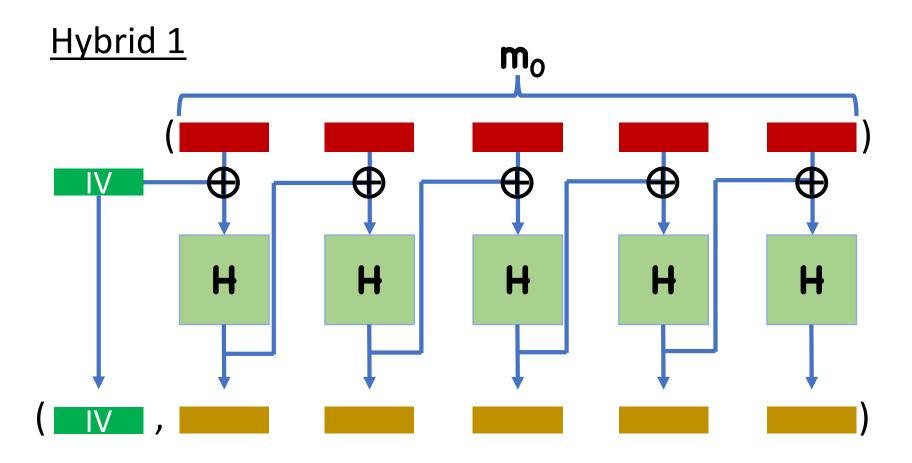


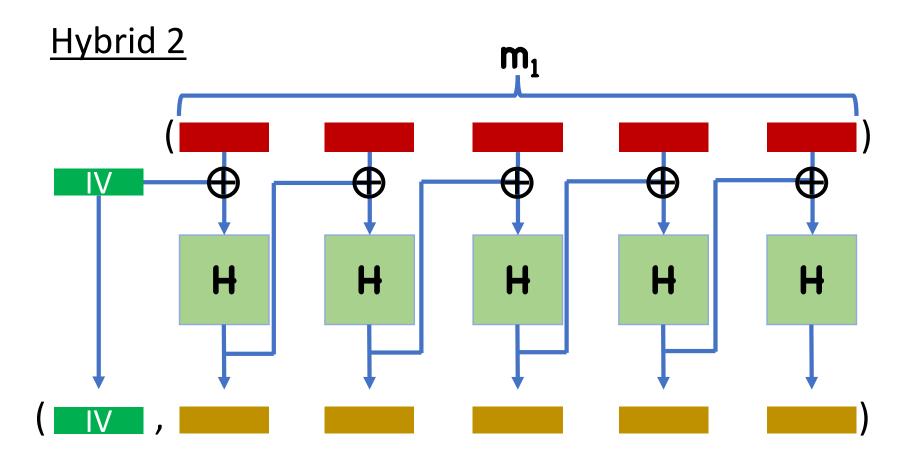
Hybrid 0,1 differ by replacing calls to **F** with calls to random permutation **H** 

Indistinguishable by PRP security

Same for Hybrids 2,3

All that is left is to show indistinguishability of 1,2





#### Idea:

- As long as, say, the sequence of left messages queried by does not result in two calls to on the same input, all outputs will be random (distinct) outputs
- For each message, first query to F will be uniformly random
- Second query gets XORed with output of first query to F ⇒ ≈ uniformly random

#### Idea:

- Since queries to F are (essentially) uniformly random, probability of querying same input twice is exponentially small
- Ciphertexts will be essentially random
- True regardless of encrypting  $m_0$  or  $m_1$

### Stateful Variants of CBC

#### Chained CBC

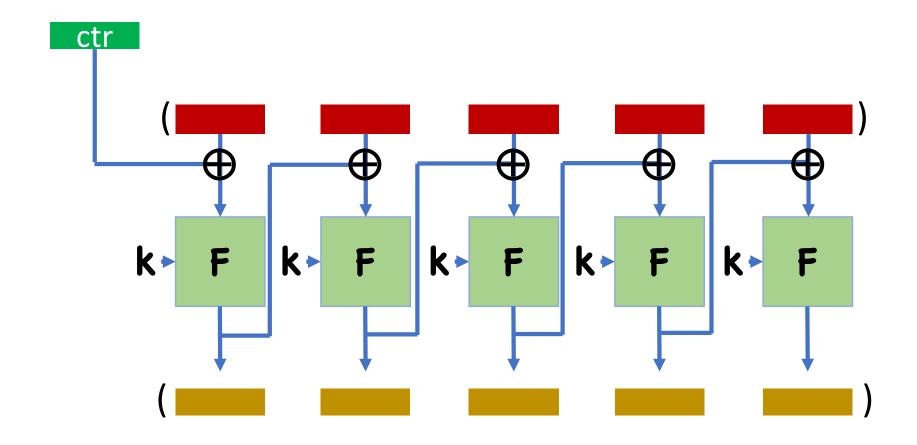
IV is set to last block of previous ciphertext

#### **Deterministic IV**

- Sender keeps a counter
- To encrypt, IV is set to counter, and counter is incremented

Both variants mean no need to send IV

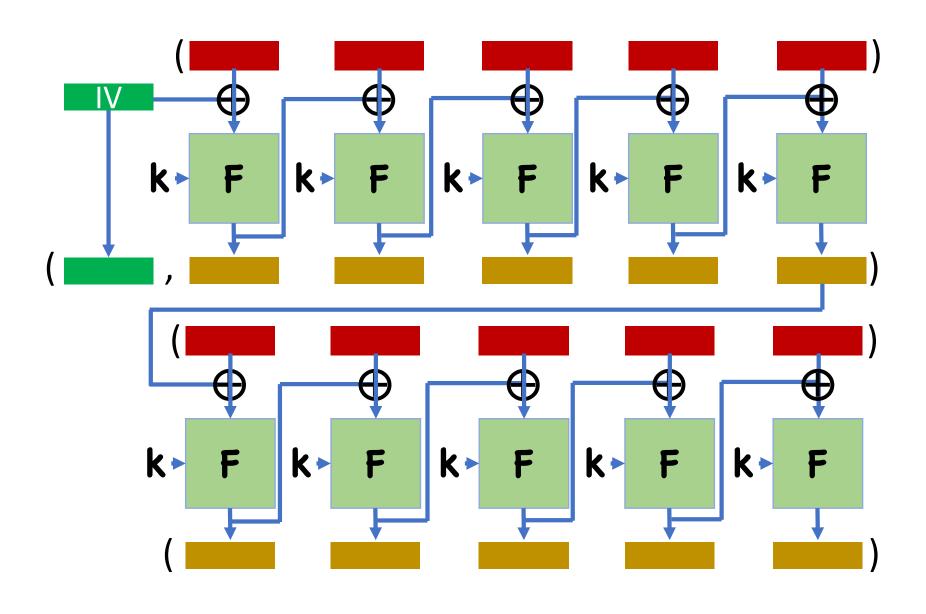
### Deterministic IV



ctr ++

### Is Deterministic IV Secure?

### Chained CBC



### Is Chained CBC Secure?

### CBC Mode with Predictable IV

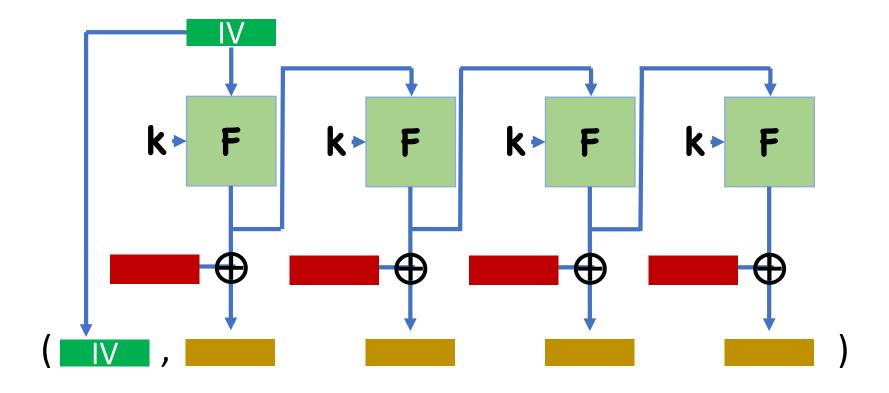
In general, if you can predict the **IV** of the next message, you can break CBC-mode encryption

#### Idea:

- Set first block of next message to be the next IV
- Then F will be applied to 0
- First block of ciphertext will be F(k,O)

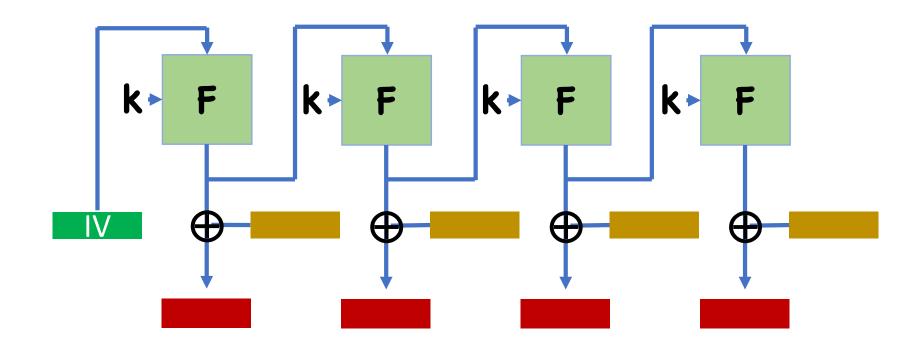
So if we set left messages in this way, all first blocks will be the same

### Output Feedback Mode (OFB)



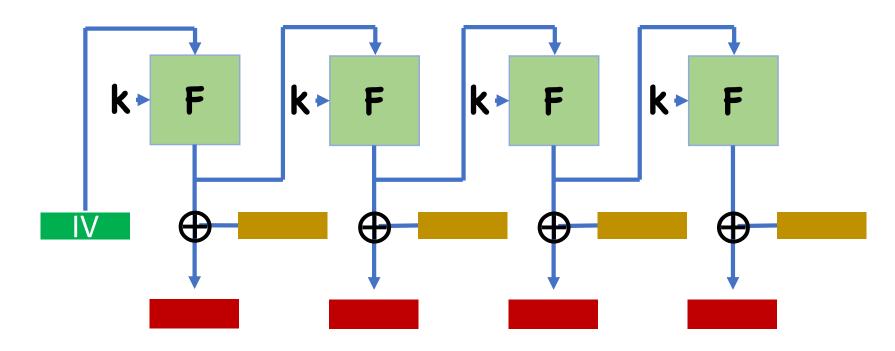
Turn block cipher into stream cipher

### **OFB** Decryption



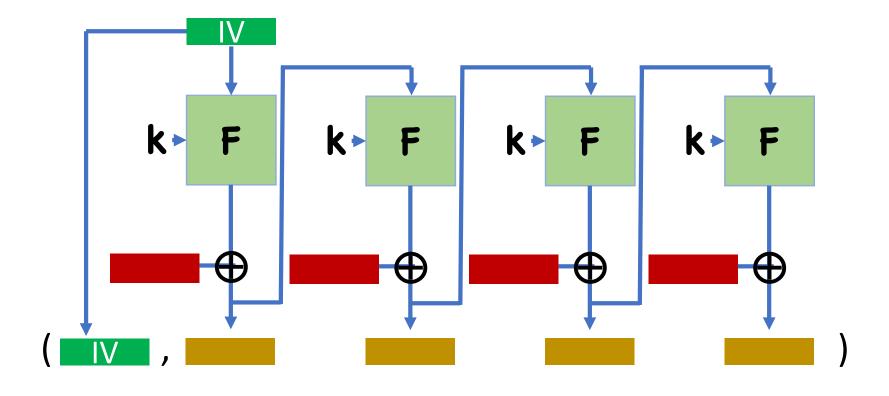
## What happens if a block is lost in transmission?

#### OFB decryption:



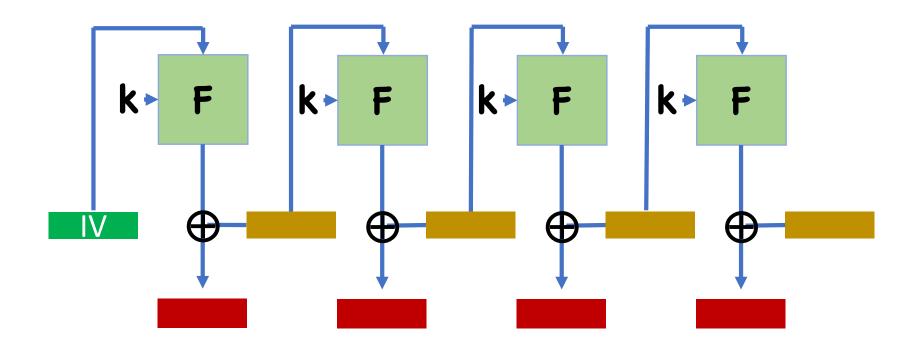
Same goes for CTR mode

### Cipher Feedback (CFB)



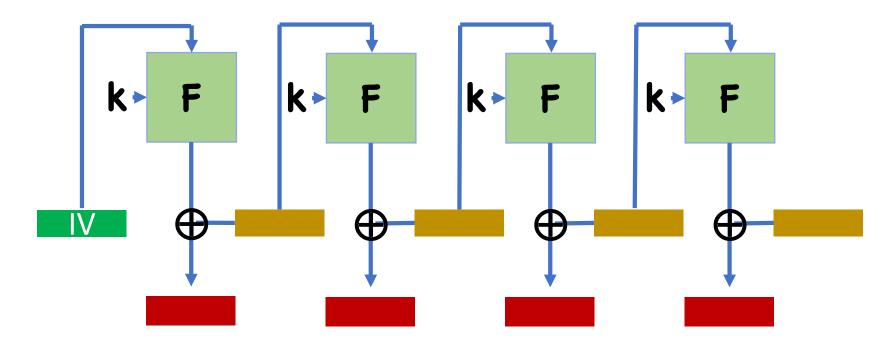
Turn block cipher into self-synchronizing stream cipher

### CFB Decryption



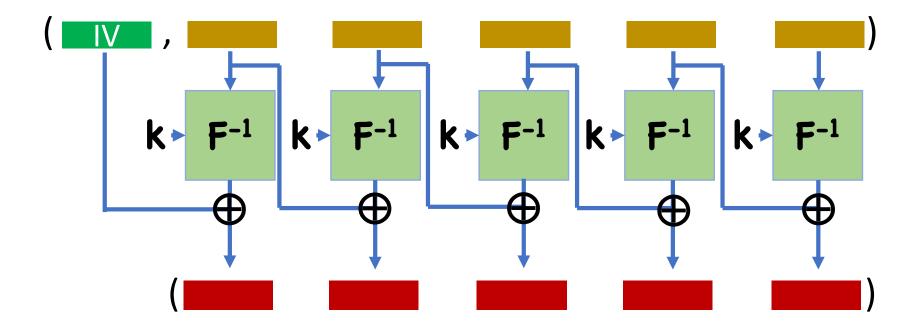
## What happens if a block is lost in transmission?

#### CFB decryption:



## What happens if a block is lost in transmission?

What about CBC?



### Security of OFB, CFB modes

Security very similar to CBC

#### Define 4 hybrids

- 0: encrypt left messages
- 1: replace PRP with random permutation
- 2: encrypt right messages
- 3: replace random permutation with PRP
- 0,1 and 2,3 are indistinguishable by PRP security
- 1,2 are indistinguishable since ciphertexts are essentially random

### Summary

PRPs/Block Ciphers

Modes of operations: ECB, Counter, CBC, OFB, CFB

### Next Time

Designing PRPs/PRFs

### Reminders

My OH today are delayed until 5pm

• Resume normal schedule next week

HW2 due tomorrow

Project 1 due next week