COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously on COS 433...

Security Experiment/Game (One-time setting)

IND-Exp_b()

Security Definition (One-time setting)

Definition: (Enc, Dec) has (†,ε)-ciphertext indistinguishability if, for all ** running in time at most †

$$Pr[1←IND-Exp0(※)]$$
- Pr[1←IND-Exp₁(※)] ≤ ε

Construction with | k | << | m |

Idea: use OTP, but have key generated by some expanding function **G**

What Do We Want Out of **G**?

Definition: $G:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{n}$ is a **(†,\varepsilon)**-secure **pseudorandom generator** (PRG) if:

- n > λ
- **G** is deterministic
- For all in running in time at most t,

$$Pr[\lambda (G(s))=1:s\leftarrow\{0,1\}^{\lambda}]$$

$$-Pr[\lambda (x)=1:x\leftarrow\{0,1\}^{n}] \leq \epsilon$$

Reminder: Kerckhoffs's Principle

Kerckhoffs's Principle: A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

Applies to any crypto object we'll see in this course

For PRGs, the "key" is just the input to the function

Secure PRG -> Ciphertext Indistinguishability

$$K = \{0,1\}^{\lambda}$$

 $M = \{0,1\}^{n}$
 $C = \{0,1\}^{n}$

Enc(k,m) = PRG(k)
$$\oplus$$
 m
Dec(k,c) = PRG(k) \oplus c

Intuitively, security is obvious:

- PRG(k) "looks" random, so should completely hide m
- However, formalizing this argument is non-trivial.

Solution: reductions

 Assume toward contradiction an adversary for the encryption scheme, derive an adversary for the PRG

Assume towards contradiction that there is a 🤼 such that

Use to build . will run as a subroutine, and pretend to be

Case 1: x = PRG(s) for a random seed s

• "sees" IND-Exp_b for a random bit b

Case 1: x = PRG(s) for a random seed s

• "sees" **IND-Exp**_b for a random bit **b**

Case 2: x is truly random

• "sees" OTP encryption

Case 2: x is truly random

- "sees" OTP encryption
- Therefore **Pr[b'=1 | b=0] = Pr[b'=1 | b=1]**

Putting it together:

•
$$Pr[\lambda(G(s))=1:s \leftarrow \{0,1\}^{\lambda}] = \frac{1}{2}(1 \pm \epsilon(\lambda))$$

•
$$Pr[(x)=1:x \leftarrow \{0,1\}^n] = \frac{1}{2}$$

• Absolute Difference: $1/2\epsilon_{\star} \Rightarrow$ Contradiction!

Thm: If **G** is a $(t+t', \varepsilon/2)$ -secure PRG, then **(Enc,Dec)** is has (t,ε) -ciphertext indistinguishability, where t' is the time to:

- Flip a random bit b
- XOR two **n**-bit strings

Thm: If G is a $(t+poly, \epsilon/2)$ -secure PRG, then (Enc, Dec) is has (t,ϵ) -ciphertext indistinguishability

Idea: define sequence of "hybrid" experiments "between" **IND-Exp**₀ and **IND-Exp**₁

In each hybrid, make small change from previous hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from **IND**- $\mathbf{Exp_0}$ and $\mathbf{IND-Exp_1}$ is undetectable

Hybrid 0: IND-Expo

Hybrid 1:

Hybrid 2:

Hybrid 3: IND-Exp₁


```
| Pr[b'=1 : IND-Exp_0]-Pr[b'=1 : IND-Exp_1] |
      = | Pr[b'=1 : Hyb 0] - Pr[b'=1 : Hyb 3] |
      ≤ | Pr[b'=1 : Hyb 0]-Pr[b'=1 : Hyb 1] |
        + | Pr[b'=1 : Hyb 1]-Pr[b'=1 : Hyb 2] |
        + | Pr[b'=1 : Hyb 2]-Pr[b'=1 : Hyb 3] |
If |Pr[b'=1:IND-Exp_0]-Pr[b'=1:IND-Exp_1]| \ge \varepsilon,
Then for some i=0,1,2,
      |Pr[b'=1:Hyb i]-Pr[b'=1:Hyb i+1]| \ge \varepsilon/3
```

Suppose \mathbb{R} distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$

Suppose \mathbb{R} distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$ \Rightarrow Construct

Suppose $\rat{\mathbb{R}}$ distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\epsilon/3$ \Rightarrow Construct

If is given **G(s)** for a random **s**, sees **Hybrid 0**If is given x for a random **x**, sees **Hybrid 1**

Therefore, advantage of) is equal to advantage of) which is at least $\epsilon/3 \Rightarrow$ Contradiction!

Suppose \mathbb{R} distinguishes **Hybrid 1** from **Hybrid 2** with advantage $\varepsilon/3$

Suppose \Re distinguishes **Hybrid 2** from **Hybrid 3** with advantage $\varepsilon/3$

How do we build PRGs?

- Last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

- last bit of state is removed and outputted
- Rest of bits are shifted right
- First bit is XOR of subset of remaining bits

Are LFSR's secure PRGs?

Are LFSR's secure PRGs?

No!

First **n** bits of output = initial state

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Definition: G is (t,p,ε) -unpredictable if, for all running in time at most t,

$$Pr[G(s)_{p+1} \leftarrow \mathcal{F}(G(s)_{[1,p]})] - \frac{1}{2} \leq \epsilon$$

PRGs should be Unpredictable

More generally, it should be hard, given some bits of output, to predict subsequent bits

Theorem: G is **unpredictable** iff it is **pseudorandom**

Pseudorandomness -> Unpredictability

Assume towards contradiction s.t.

$$Pr[G(s)_{p+1} \leftarrow F(G(s)_{[1,p]})] - \frac{1}{2} > \epsilon$$

Pseudorandomness → Unpredictability

Pseudorandomness -> Unpredictability

Analysis:

- If x is random, $Pr[1 \oplus b \oplus x_{p+1} = 1] = \frac{1}{2}$
- If **x** is pseudorandom,

Pr[1
$$\oplus$$
b \oplus x_{p+1} = 1]
= Pr[G(s)_{p+1} \leftarrow (G(s)_[1,p])]
> (½ + ϵ) or < (½ - ϵ)

Unpredictability -> Pseudorandomness

Assume towards contradiction is s.t.

$$Pr[integration (G(s))=1:s ← {0,1}λ] - Pr[integration (x)=1:x ← {0,1}†] > ε$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

 H_0 : truly random x

H_t: pseudorandom **†**

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$Pr[](x)=1:x\leftarrow H_s]$$

$$-Pr[](x)=1:x\leftarrow H_0] > \varepsilon$$

$$Let q_i = Pr[](x)=1:x\leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

$$| q_t - q_0 | > \varepsilon$$

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

Unpredictability → Pseudorandomness

Hybrids:

$$H_i: x_{[1,i]} \leftarrow G(s), x_{[i+1,t]} \leftarrow \{0,1\}^{t-i}$$

By triangle inequality, there must exist an i s.t.

$$| q_i - q_{i-1} | > \varepsilon/t$$

Can assume wlog that

$$q_i - q_{i-1} > \varepsilon/t$$

Unpredictability → Pseudorandomness

Construct **

Unpredictability → Pseudorandomness

Analysis:

- If $\mathbf{b} = \mathbf{G}(\mathbf{s})_i$, then \mathbf{k} sees \mathbf{H}_i
 - \Rightarrow outputs **1** with probability $\mathbf{q_i}$
 - \Rightarrow outputs **b=G(s)**_i with probability **q**_i

Unpredictability → Pseudorandomness

Analysis:

• If $\mathbf{b} = \mathbf{1} \oplus \mathbf{G}(\mathbf{s})_i$, then Define \mathbf{q}_i as $\mathbf{Pr}[]_i$ outputs $\mathbf{1}]$ $\frac{1}{2}(\mathbf{q}_i' + \mathbf{q}_i) = \mathbf{q}_{i-1} \Rightarrow \mathbf{q}_i' = 2\mathbf{q}_{i-1} - \mathbf{q}_i$ $\Rightarrow \mathbf{q}_{i-1} \Rightarrow \mathbf{q}_{i$

Unpredictability → Pseudorandomness

Analysis:

• Pr outputs G(s);]

$$= \frac{1}{2} (q_i) + \frac{1}{2} (1 + q_i - 2q_{i-1})$$

$$= \frac{1}{2} + q_i - q_{i-1}$$

$$> \frac{1}{2} + \epsilon/t$$

Linearity

Linearity

LFSR's are linear:

Linearity

LFSR's are linear:

Each output bit is a linear function of the initial state (that is, G(s) = A ● s (mod 2))

Any linear **G** cannot be a PRG

Can check if x is in column-span of A using linear algebra

Introducing Non-linearity

Non-linearity in the output:

Non-linear feedback:

LFSR period

Period = number of bits before state repeats

After one period, output sequence repeats

Therefore, should have extremely long period

- Ideally almost 2^λ
- Possible to design LFSR's with period 2^λ-1

Hardware vs Software

PRGs based on LFSR's are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG

Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers

Permutation stored as 256-byte array S

```
Init(16-byte k):
    For i=0,...,255
        S[i] = i
        j = 0
        For i=0,...,255
            j = j + S[i] + k[i mod 16] (mod 256)
            Swap S[i] and S[j]
        Output (S,0,0)
```

RC4

```
GetBits(S,i,j):

• i++ (mod 256)

• j+= S[i] (mod 256)

• Swap S[i] and S[j]

• t = S[i] + S[j] (mod 256)

• Output (S,i,j), S[t]
```

New state

Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0

- $Pr[second byte = 0^8] \approx 2/256$
- Should be 1/256

Means RC4 is not secure according to our definition

- a outputs 1 iff second byte is equal to 08
- Advantage: ≈ 1/256

Not a serious attack in practice, but demonstrates some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the input **k** in some use cases

- The seed is set to (IV, k) for some initial value IV
- Encrypt messages as RC4(IV,k)⊕m
- Also give IV to attacker
- Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption standard

Extending the Stretch of a PRG

Suppose you have a fixed-stretch PRG G

• Better yet, a PRG that expands by a single bit G: $\{0,1\}^{\lambda} \rightarrow \{0,1\}^{\lambda+1}$

Construct a PRG **G'** of arbitrary output length

Extending the Stretch of a PRG

Assume towards contradiction ...

Define hybrids...

H_t:

 H_0 corresponds to pseudorandom x

H_t corresponds to truly random **x**

Let
$$q_i = Pr[x(x)=1:x \leftarrow H_i]$$

By assumption, $|\mathbf{q}_t - \mathbf{q}_0| > \epsilon$

$$\Rightarrow \exists i \text{ s.t. } |q_i - q_{i-1}| > \varepsilon/t$$


```
Analysis
• If y = G(s), then sees H_{i-1}
        \Rightarrow Pr[\hat{n} outputs 1] = q_{i-1}
        \Rightarrow \Pr[\mathcal{E}_{outputs 1}] = q_{i-1}
```

- If **y** is random, then sees **H**_i \Rightarrow Pr[λ outputs 1] = q_i
 - \Rightarrow Pr[@outputs 1] = q_i

Summary

Stream ciphers = secure encryption for arbitrary length, number of messages (though we did not completely prove it)

However, implementation difficulties due to having to maintaining state

Reminders

Project 1 part 1 Due Tomorrow

HW2 will be released tonight