COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously on COS 433...

Security Experiment/Game

(One-time setting)

1

Challenger

é k € K

j‘f ¢ € Enc(k,m,)

IND-Exp,(™)

Security Definition (One-time setting)

Gefinition: (Enc, Dec) has (t,€)-ciphertext \
indistinguishability if, for all = running in time at
most t

| Pri1€IND-Exp,(=)]
- pri1€IND-Exp, (=) 1| <

(& /

Construction with |k| << |ml

ldea: use OTP, but have key generated by some
expanding function G

What Do We Want Out of G?
ﬁefinition: G:40,1}* > {0,1}" is a (t,€)-secure \

pseudorandom generator (PRG) if:

* n>A

 Gis deterministic

* For allﬂL running in time at most ft,

| Pr(ﬂ (G(s))=1:s€<10,1}']
- prl i)=txefo] | < e

S /

Reminder: Kerckhoffs’s Principle

Kerckhoffs’s Principle: A cryptosystem should be
secure even if everything about the system,
except the key, is public knowledge.

Applies to any crypto object we’ll see in this course

For PRGs, the “key” is just the input to the function

Secure PRG =2 Ciphertext Indistinguishability

K = {0,1}*
M = {0,1}"
C = {0,1}n

Enc(k,m) = PRG(K) ® m
Dec(k,c) = PRG(k) @ ¢

Security?

Intuitively, security is obvious:
* PRG(K) ”looks” random, so should completely hide m
* However, formalizing this argument is non-trivial.

Solution: reductions
* Assume toward contradiction an adversary for the
encryption scheme, derive an adversary for the PRG

Security

. J

Assume towards contradiction that thereisa + -
such that

|Pr[W,]-Pr[W,]l2¢, non-negligible
W,: b’ = 1 in IND-Exp,

Security

@ .
Use 1\ to bwldﬁ i’ will run & > as a subroutine,

| X

<
(either'G(s) or truly random)

b € {0,1}
c € xem,

Security

Case 1: X = PRG(s) for a random seed s
» £ “sees” IND-Exp, for a random bit b

@ Mo mEM b € {01}
1\ C s € K
° ¢ € PRG(s)em,

Security

Case 1: X = PRG(s) for a random seed s
» £ “sees” IND-Exp, for a random bit b
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1]
+ % (1 - Pr[b’=1 | b=0])
= %(1 + Pr[W,] - Pr[w,])
=%(1l+¢e)

Security

Case 2: X is truly random

« & “sees” OTP encryption

@ Mo mEM, b € {01}
1\ c x € {0,1}n
- c € xem,

Security

Case 2: X is truly random

J
@

e 7. “sees” OTP encryption
* Therefore Pr[b’=1 | b=0] = Pr[b’=1 | b=1]
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1]
+ % (1 - Pr[b’=1 | b=0])
=

Security

Putting it together:

- Pri i (G(s)=1:5€{0,1P] = %(1 £ £(A))
+ ri J(x)=1:x€{0,1}] = %

* Absolute Difference: Y2, = Contradiction!

Security

‘Thm: If G is a (t+1’,€/2)-secure PRG, then A
(Enc,Dec) is has (t,€)-ciphertext indistinguishability,
where t’ is the time to:

* Flip arandom bit b

K. XOR two n-bit strings

Security

‘Thm:If G is a (t+poly,e/2)-secure PRG, then

o

(Enc,Dec) is has (t,€)-ciphertext indistinguishability

J

An Alternate Proof: Hybrids

ldea: define sequence of “hybrid” experiments
“between” IND-Exp, and IND-Exp,

In each hybrid, make small change from previous
hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from IND-
Exp, and IND-EXp, is undetectable

An Alternate Proof: Hybrids

Hybrid 0: IND-Exp,

u mo' mlEM k < K
LW ¢ ¢ € G(K)em,

An Alternate Proof: Hybrids

Hybrid 1:

u m,, MEM X € {0,1}"
1\ c c € xem,

An Alternate Proof: Hybrids

Hybrid 2:

u m,, MEM X € {0,1}"
1\ c c € xem,

An Alternate Proof: Hybrids

Hybrid 3: IND-EXxp,

u mo' mlEM k < K
LW ¢ ¢ € G(K)em,

An Alternate Proof: Hybrids

| Pr[b’=1 : IND-Exp,]-Pr[b’=1 : IND-Exp,] |
= | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 3] |
< | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 1] |

+ | Pr[b’=1 : Hyb 1]-Pr[b’=1 : Hyb 2] |
+ | Pr[b’=1 : Hyb 2]-Pr[b’=1 : Hyb 3] |

If IPr[b’=1:IND-Exp,]-Pr[b’=1:IND-Exp,]l2¢,
Then for some i=0,1,2,

|Pr[b’=1:Hyb i]-Pr[b’=1:Hyb i+1]| 2 /3

An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 0 from Hybrid 1
with advantage €/3

k € K x € {0,1}n
@ o M @ o M
1 ¢ € G(k)em, 1€ € xem,
N\ N\«

b’ b’

An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 0 from Hybrid 1
with advantage €/3 = Construct

X

G(s) or truly random)

<
(either

c € xem,

——_—__m-_——

——_—_—_—_—_—_—_—_—_—_d

An Alternate Proof: Hybrids

Suppose . distinguishes Hybrid 0 from Hybrid 1
with advantage €/3 = Construct t
If
If

t is given G(s) for arandoms, = sees Hybrid 0

l is given x for a random x, & sees Hybrid 1

Therefore, advantage of ﬁt is equal to advantage of -2
which is at least €/3 = Contradiction!

An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 1 from Hybrid 2
with advantage €/3

x € 10,1} x € 10,1}
@ o mEM @ o mEM
*w ’\<c < xem, N - < xem,

b’ b’

An Alternate Proof: Hybrids

Suppose = distj from Hybrid 2

with advanta

x € §0,1}sW

) \ X®ml

An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 2 from Hybrid 3
with advantage €/3

x € {0,1}n k € K
@ o, <M @ o m <M
I\ & € xom, 1\ ¢ € G(k)em,

1' Proof essentially identical to }
b Hybrid O/Hybrid 1 case

How do we build PRGs?

Linear Feedback Shift Registers

In each step,
e Last bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 1 0 |

— 0

Linear Feedback Shift Registers

In each step,

ast bit of state is removed and outputted
Rest of bits are shifted right

First bit is XOR of subset of remaining bits

T |
0 1 | (0 \
n

Linear Feedback Shift Registers

In each step,

ast bit of state is removed and outputted
Rest of bits are shifted right

First bit is XOR of subset of remaining bits

T |
0 1 | (0 \
n

Linear Feedback Shift Registers

In each step,
* |ast bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 0 | 1 \
1]o0

Linear Feedback Shift Registers

In each step,
* |ast bit of state is removed and outputted

e Rest of bits are shifted right
* First bit is XOR of subset of remaining bits

T |
| 0 | 1 \
1]o0

— 0

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 | 0 | \
1]o[1

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 | 0 | \
1]o[1

— 0

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 (0 | 0 \
1]o[1]1

Linear Feedback Shift Registers

In each step,

* |ast bit of state is removed and outputted
e Rest of bits are shifted right

* First bit is XOR of subset of remaining bits

T |
0 (0 | 0 \
1]o[1]1

— 0

Linear Feedback Shift Registers

Are LFSR’s secure PRGSs?

Linear Feedback Shift Registers

Are LFSR’s secure PRGSs?
No!

First n bits of output = initial state

/ Write x - x1'uo’xn' x'
X

Initialize LFSB to have state Xy, ...,X,

Run LFSB for Ix| steps, obtaining y
Checkify = X

=

PRGs should be Unpredictable

More generally, it should be hard, given some bits of
output, to predict subsequent bits

' Definition: G is (f,p,e)-unpredictable if, for all ,
running in time at most t,

PRGs should be Unpredictable

More generally, it should be hard, given some bits of
output, to predict subsequent bits

Theorem: G is unpredictable iff it is pseudorandom

Proof

Pseudorandomness = Unpredictability

Assume towards contradiction . 4F's.t.

| PriGs),,, € B (G661 -% | >e

Ie

Proof

Pseudorandomness = Unpredictability

Construct ﬁt

Proof

Pseudorandomness =2 Unpredictability

Analysis:
* If X is random, Pr[1ebex,,; = 1] = %
* If X is pseudorandom,
Pr(lebex,,; = 1]
= Pr[G(s)p+l < 7,;,4{7(6(5)[1,p])]
> (% +€) or < (% - €)

([

Proof

Unpredictability 2 Pseudorandomness

Assume towards contradiction ﬁt s.t.

| pri ji(GeN=1:5¢{0,11
- pri j=txefo i | > e

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {O,l}f"

H,: truly random X
H.: pseudorandom t

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), X[i+1,1] < {O,l}f"

| prl jj=1:xH,]
- prlf =tixeho] | > e

Letq; = Pl (x)=l:x€H;]

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {O,l}f"

1 qt - qo | > ¢

Letq; = Pl (x)=l:x€H;]

Proof

Unpredictability 2 Pseudorandomness

Hybrids:
Hi: X[1,i] < G(S), Xli+1,1] < {O,l}f"

By triangle inequality, there must exist an i s.t.

| qi - qi, | > €/t

Can assume wlog that

qi - g, > &/t

Proof

Unpredictability 2 Pseudorandomness

Construct . o

D
Q
wn
~r
x
0
a

Proof

Unpredictability 2 Pseudorandomness

Analysis:

*Ifb = G(s), then Jj sees H,
:>j outputs 1 with probability q;
4P outputs b=G(s), with probability g,

Proof

Unpredictability 2 Pseudorandomness

Analysis:
*Ifb = I@G(S)i, then |
Define q;" as Pr| E outputs 1]

% + q) =g = g =29, - g
4" outputs G(s)[l'i] with probability
1-q/ = 1 + q; - 2q;,

Proof

Unpredictability 2 Pseudorandomness

Analysis:
4 outputs G(s);]

=%(q) +% (1 +q - 2q.,)
=%+ q - q,
> % + €ft

Linearity

Linearity

LFSR’s are linear:

T—F |
1 |1 O l\

— 0

state’ = (

output = (0 0 0 0 1) e state

e state

oo ol e
OO~ Owm
O OO0
- O 00O
Q00O

Linearity

LFSR’s are linear:
* Each output bit is a linear function of the initial

state (thatis, G(s) = A e s (mod 2))

Any linear G cannot be a PRG
* Can check if X is in column-span of A using linear

algebra

Introducing Non-linearity

Non-linearity in the output:

fany

Non-linear feedback:

FTTTT R

LFSR period

Period = number of bits before state repeats
After one period, output sequence repeats
Therefore, should have extremely long period

e |deally almost 22
* Possible to design LFSR’s with period 2*-1

Hardware vs Software

PRGs based on LFSR’s are very fast in hardware

Unfortunately, not easily amenable to software

RC4

Fast software based PRG
Resisted attack for several years

No longer considered secure, but still widely used

RC4

State = permutation on [256] plus two integers
* Permutation stored as 256-byte array S

Init(16-byte K):

* Fori=0,...,255
Sli] =i

-j=0

* For i=0,...,255
j=J + S[i] + k[i mod 16] (mod 256)
Swap S[i] and S[j]

e Output (S,0,0)

RC4

GetBits(S,i,j):

* i++ (mod 256)

° j-l-: S[l] (mod 256)

* Swap S[i] and S[j]

*t = S[i] + S[j] (mod 256)
* Output (S,i,j), S[t]

SN

New state Next output byte

Insecurity of RC4

Second byte of output is slightly biased towards 0
* Prlsecond byte = 08] = 2/256
* Should be 1/256

Means RC4 is not secure according to our definition
. it outputs 1 iff second byte is equal to 08
 Advantage: = 1/256

Not a serious attack in practice, but demonstrates
some structural weakness

Insecurity of RC4

Possible to extend attack to actually recover the
input K in some use cases
* The seed is set to (IV, k) for some initial value IV

* Encrypt messages as RC4(IV,k)em
* Also give 1V to attacker
e Cannot show security assuming RC4 is a PRG

Can be used to completely break WEP encryption
standard

Extending the Stretch of a PRG

Suppose you have a fixed-stretch PRG G
» Better yet, a PRG that expands by a single bit

G: {0,1} > {0,1}+

Construct a PRG G’ of arbitrary output length

Extending the Stretch of a PRG

Security Proof

Assume towards contradiction E

Define hybrids...

Security Proof

H.:
" {01

]]]
\ J

|

i

Security Proof

{0,1}"

Security Proof

H.:
¢ {0,1p
4

state, 4 state;

Security Proof

H;:

Security Proof

H, corresponds to pseudorandom X
H; corresponds to truly random X
Let q; = Pr[E(x):l:xél—li]

By assumption, Iq; = qol > €

= Fistlq = qyl > e/t

Security Proof

Security Proof

Analysis
* Ify = G(s), thenﬁL sees H;_,

= Pr[ﬂ outputs 1] = q;_,
= Pr[goufpui's 1] = q;,

N

* If y is random, thenﬁL

= Prl ﬂ outputs 1] = q;
= Pr[@oufpu’rs 1] = q;

sees H;

Summary

Stream ciphers = secure encryption for arbitrary
length, number of messages
(though we did not completely prove it)

However, implementation difficulties due to having
to maintaining state

Reminders

Project 1 part 1 Due Tomorrow

HW?2 will be released tonight

