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Previously on COS 433...



Perfect Security for Multiple Messages

/Definition: A stateless scheme (Enc,Dec) has perfect\
secrecy for n messages if, for any two sequences of

messages (Mo)icra) » (MD)icryy € M4

(E"C(K: m," ))ie[d] = (E"C(K: m, () ))ie[d]
\ /

Notation:( f(l) )iE[d] = ( f(l), f(z)p ooy F(n) )



-

-

Theorem: No stateless deterministic
encryption scheme can have perfect security
for multiple messages

J




Randomized Encryption

Syntax:

* Key space K (usually £0,1}")

* Message space M (usually §0,1}")

* Ciphertext space C (usually §0,1}™)

* Enc: KxM > C (potentially probabilistic)
* Dec: KxC 2> M (usually deterministic)

Correctness:
* Forall KEK, mEM,
Pr[ Dec(k, Enc(k,m) ) =m ] =

1



-

-

Theorem: No stateless randomized
encryption scheme can have perfect security
for multiple messages

~

J




What do we do now?

Tolerate tiny probability of distinguishing
e If Pr[c(® = c()] = 2-128 in reality never going to
happen

How small is ok?
e Usually 2-80, 2-128 or maybe 2-256

Next time: formalize weaker notion of secrecy to
allow for small probability of detection



Statistical Distance

Given two distributions D,, D, over a set X, define
A(DI'DZ) - 1/22,( I PI"[D1=X] - Pl"[Dz=X] l

Observations:
0 < A(D,,D,) ¢ 1

A(D,D,)=0 & D, <D,
A(DIIDZ) b3 A(DltD3) + A(D3,D2)

(A is a metric)



Another View of Statistical Distance

4 "
Theorem: A(D,,D,) 2 € iff FA s.t.

| Pr{A(D) = 1] - PrlAMD,) = 1] | 2 €
- /

Terminology: for any A,
| Pr(A(D,)) = 1] - Pr[A(D,) = 1] |
is called the “advantage” of Ain
distinguishing D, and D,



Another View of Statistical Distance

4 N
Theorem: A(D,,D,) 2 € iff FA s.t.

| Pr{A(D) = 1] - PrlAMD,) = 1] | 2 €
- /

To lower bound A, just need to show
adversary A with that advantage



Examples

D, = Uniform distribution over {0,1}"

* Pr[D,=x] = 2"

D, = Uniform subject to even parity

* Pr[D,=x] = 2-"1 if x has even parity, 0 otherwise

A(D,,D,) = %3, |2-n - 2-(-1) |
+ %345 127 -0
= 1/zzeven X 2" + 1/zzodd X 2"

=%



Examples

D, = Uniform over {1, ...,n}
D, = Uniform over {1,...,n+1}

A(D,D,) =43, I11/n - 1/(n+1) |
+ %10 - 1/(n+1) |

= %3, 1/n(n+l) + % 1/(n+l)

= % 1/(n+1) + % 1/(n+1) = 1/(n+1)



Statistical Security

/Definition: A scheme (Enc,Dec) has e-statistical
secrecy for d messages if V two sequences of
MESSAageES (mo(i))ie[d] ’ (ml(i))ie[d] & Md

A[ (Enc(k, mo®))iciarr

(EﬂC(K: m, () ))i€[d] ] < E

\

We will call such a scheme (d,€)-secure



Statistical Security

We will consider a scheme “secure” for d messages if
it is (d,e)-secure for very small €

« E.g. 2780, 2-128 otc

For comparison: chance of

* Being struck by lightning twice: 2-23

* Winning the lottery: 2-26

» World-ending asteroid while on this slide: 2-46



Stateless Encryption with Multiple Messages

Ex:

M = C = Z, (p aprime of size 2-128)
K = U * X ZP

Enc( Ea,b), m) = (am + b) mod p
Dec( (a,b), ¢) = (c-b)/a mod p

Q: Is this statistically secure for two messages?



Example

Ex:

M = Z, (p aprime of size 2-128)

C =17, Random in %
K = sz / P
Enc( (a,b), m) = (r, (ar+b) + m)

Dec( (a,b), (r,c) ) = ¢ - (ar+b)

Q: Is this statistically secure for two messages?



Proof of Example

Let D, be distribution of ( Enc(k,m,?) );
Let D, be D, but conditioned on ry#r,

f’r)[aro-l-b-l-mo:co, ar,;+b+m,=c,] = 1/p?
a,b



Proof of Example

/Lemma: A(D,,D,) ¢ Pr[bad|D,] + Pr[bad|D,] \
+ A(D," ,D,’)
Where:
* “bad” is some event
 Pr[bad|D,] is probability “bad” when
sampling from D,
& D,’ is D, but conditioned on not “bad” /




Proof of Lemma

A(D,,D,) = 3.| Pr[D,=x] - Pr[D,=x] |

= Zx:badl PV[D1=X ] - PT‘[D2=X ] |
+ Zyg00dl PrID;=x ] - Pr[D,=x 1|

£ zx:badl Pr(D;=x ) | + zx:badl Pr{D,=x ] |
+ 2x:goodI lDr[Dl:x] = pr[D2=X] I

S Pl“[bddIDI] + pr[badIDZ] + A(Dl,goodlDZ,gOOd)



Proof of Example

et D, be distribution of ( Enc(k,m,®) ),
et bad be when ry=r,
et D,’ be D,, but conditioned on not bad

Pr(badID,] = 1/p
A(Do’, Dl’) =0

Therefore, A(D,, D,) ¢ 2/p



Summary so Far

Stateless encryption for multiple messages
But, key length grows with number of messages ¥

And, key length grows with length of message X



Limits of Statistical Security

Kl'heorem: Suppose (Enc,Dec) has plaintext space M =

§0,1}" and key space K = {0,1}'. Moreover, assume it is
(d,%)-secure. Then:

~

t2dn
\_ /

In other words, the key must be at least as long as
the total length of all messages encrypted



Proof Idea

Use an encryption protocol to build a compression
protocol

»m :
. m b <

m’ € Comp(m) m < Decomp(m’)

Goal: [m’| < Iml|



For Now: Easier Goal

m’ € Comp(s,m) m € Decomp(s,m’)

Goal: [m’| < Iml|



The Protocol

Let my, be some message in M

Setup():
* Choose random K, €K
* Let ¢, €Enc(k,m,), ..., cgE€Enc(ky,m,)

* Output (c,,...,c4) In Md
/

Comp( (c,,....c4), (mMy,....my) ):

* Find Kk, 1y, ...,ry such that ¢;=Enc(k,m;; r;) Vi
* |f no such values exist, abort

e Output k



The Protocol

Let my be some message in M
d
/ In M
Comp( (cy,...,.€4), (My,....m,) ): .
* Find k,ry,...,Iy such that ¢;=Enc(k,m;; r;) Vi
* |f no such values exist, abort
e Output k

Decomp((c,,...,c4), K ):
« Compute m, = Dec(k,c;)
* Output (my,...,my)



Analysis of Protocol

If Comp succeeds, Decomp must succeed by
correctness
* Since ¢;=Enc(k,m;; r;), Dec(k,c;) must give m,

Therefore, must figure out when Comp succeeds

p
Claim: For any sequence of messages my,...,Mgy,
Comp succeeds with probability at least 1-€

o

(Probability over the randomness used by Setup() )



p
Claim: For any sequence of messages my,...,My,
Comp succeeds with probability at least 1-€

o

Proof:

* Suppose Comp succeeds with probability 1-p for
messages my,...,My

* Let A(c,,...,C4) be the algorithm that runs
Comp((c,,...,.¢4), (My,...,m,)) and outputs 1 if
Comp succeeds

cIfc = Enc(ko,mi), then Pr[A(Cl,...,Cd)zl] =1
* If ¢; = Enc(ky,my), then Pr[A(c,,...,c4)=1] = 1-p

* By (d,e)statistical security of Enc, p must be e



-

-

Claim: For any sequence of messages my,...,my,
Comp succeeds with probability at least 1-¢

/

.

Claim: For a random sequence of messages
m,,...,my, Comp succeeds with prob at least 1-€

J

( Probability over the randomness used by Setup()
and the random choices of my,...,m, )




Next step: Removing Setup

We know:
(cy,.,C4) € Setup(),

m. <M ]21-e

Pr[Comp succeeds:

Therefore, there must exist some (¢,*,...,¢4 ) such
that

Pr[Comp succeeds: m;<M] 2 1-¢

Define: M = {(m,,...,m,): Comp succeeds}
* Note that [M'] 2 (1-€) |M|4



The Protocol

~meM’
K :im M
M k
/ >
'
Find K,ry,...,ry such that For each i,
¢,*=Enc(k,m;. r;) Vi Let m;€Dec(k,c;*)

Output (my,...,m,)

By previous analysis,
* Alice always successfully compresses
* Bob always successfully decompresses



Final Touches

Can compress messages in M into keys in K

Therefore, it must be that [M'| ¢ |K|

Meaning t = log IK|
2 log IM|
> log [ (1-€) IMm|¢]
= d log IM| + log [1-€]
>dn - 2¢
> dn (as long as €<%)



Takeaway

If you don’t want to physically
exchange keys frequently, you cannot
obtain statistical security

So, now what?



Running
Time

Timeline/Cipher sophistication



Computational Security

We are ok if adversary takes a really long time

Usually measure in machine operations

* Though depends on architecture, so rough approx
« 280 2128 or maybe 2256 are probably ok

For comparison:
e Lifetime of universe in nanoseconds: 258
« Number of atoms in known universe: 2265



Brute Force Attacks

Simply try every key until find right one

Relevant as long as key length is smaller than total
length of messages encrypted

If keys have length A, 2* is upper bound on attack



Crypto and P vs NP

What if P = NP?

From this point forward, almost all crypto we will
see depends on computational assumptions



Holiwudd Criptoe!

) NEW FORN ONES BESTSELLING SETHOR OF
DWE B VINCY CORE AND DON

nmeAL
FORTRESS

[TRANSLTR]’s three million
processors would all work in
parallel ... trying every new
permutation as they went

~




Holiwudd Criptoe!

ﬁWhat’s the longest you've \

ever seen TRANSLTR take to

O IR O A | break a code ?n
DAN
B RQWN “About an hour, but it had a
| ridiculously long key—ten
i thousand bits”
. anrTAL /

FURTRESS




Defining Security

Consider an attacker as a probabilistic efficient
algorithm

Attacker gets to choose the messages

All attacker has to do is distinguish them



Security Experiment/Game

(One-time setting)

1

Challenger

é k € K

j‘f ¢ € Enc(k,m,)

IND-Exp,( ™)



Security Definition (One-time setting)

Gefinition: (Enc, Dec) has (t,€)-ciphertext \
indistinguishability if, for all = running in time at
most t

| Pri1€IND-Exp,( =) ]
- pri1€IND-Exp, (=) 1| <

(& /




Construction with |k| << |ml

ldea: use OTP, but have key generated by some
expanding function G




What Do We Want Out of G?
ﬁefinition: G:{40,1}* > {0,1}" is a (t,€)-secure \

pseudorandom generator (PRG) if:

* n>A

 Gis deterministic

* For allﬂL running in time at most ft,

| Pr( ﬂ (G(s))=1:s€<10,1}']
- prl i )=txefo] | < e

S /




Secure PRG =2 Ciphertext Indistinguishability

K = {0,1}*
M = {0,1}"
C = {0,1}n

Enc(k,m) = PRG(K) ® m
Dec(k,c) = PRG(k) @ ¢



Security?

Intuitively, security is obvious:
* PRG(K) ”looks” random, so should completely hide m
* However, formalizing this argument is non-trivial.

Solution: reductions
* Assume toward contradiction an adversary for the
encryption scheme, derive an adversary for the PRG



Security

. J

Assume towards contradiction that thereisa +-
such that

|Pr[W,]-Pr[W,]l2¢, non-negligible
W,: b’ = 1 in IND-Exp,



Security

@ .
Use 1\ to bwldﬁ i’ will run & > as a subroutine,

| X

<
(either'G(s) or truly random)

b € {0,1}
c € xem,




Security

Case 1: X = PRG(s) for a random seed s
» £ “sees” IND-Exp, for a random bit b

@ Mo mEM b € {01}
1\ C s € K
° ¢ € PRG(s)em,




Security

Case 1: X = PRG(s) for a random seed s
» £ “sees” IND-Exp, for a random bit b
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1 ]
+ % (1 - Pr[b’=1 | b=0])
= %(1 + Pr[W,] - Pr[w,])
=%(1l+¢e)



Security

Case 2: X is truly random

« & “sees” OTP encryption

@ Mo mEM, b € {01}
1\ c x € {0,1}n
- c € xem,




Security

Case 2: X is truly random

J
@

e 7. “sees” OTP encryption
* Therefore Pr[b’=1 | b=0] = Pr[b’=1 | b=1]
* Pr[1ebeb’=1] = Pr[b=b’]
=% Pr[b’=1 | b=1]
+ % (1 - Pr[b’=1 | b=0])
=



Security

Putting it together:

- Pri i (G(s)=1:5€{0,1P] = %( 1 £ £(A) )
+ ri J(x)=1:x€{0,1}] = %

* Absolute Difference: Y2, = Contradiction!



Security

‘Thm: If G is a (t+1’,€/2)-secure PRG, then A
(Enc,Dec) is has (t,€)-ciphertext indistinguishability,
where t’ is the time to:

* Flip arandom bit b

K. XOR two n-bit strings




Security

‘Thm:If G is a (t+poly,e/2)-secure PRG, then

o

(Enc,Dec) is has (t,€)-ciphertext indistinguishability

J




An Alternate Proof: Hybrids

ldea: define sequence of “hybrid” experiments
“between” IND-Exp, and IND-Exp,

In each hybrid, make small change from previous
hybrid

Hopefully, each small change is undetectable

Using triangle inequality, overall change from IND-
Exp, and IND-EXp, is undetectable



An Alternate Proof: Hybrids

Hybrid 0: IND-Exp,

u mo' mlEM k < K
LW ¢ ¢ € G(K)em,




An Alternate Proof: Hybrids

Hybrid 1:

u m,, MEM X € {0,1}"
1\ c c € xem,




An Alternate Proof: Hybrids

Hybrid 2:

u m,, MEM X € {0,1}"
1\ c c € xem,




An Alternate Proof: Hybrids

Hybrid 3: IND-EXxp,

u mo' mlEM k < K
LW ¢ ¢ € G(K)em,




An Alternate Proof: Hybrids

| Pr[b’=1 : IND-Exp,]-Pr[b’=1 : IND-Exp,] |
= | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 3] |
< | Pr[b’=1 : Hyb 0]-Pr[b’=1 : Hyb 1] |

+ | Pr[b’=1 : Hyb 1]-Pr[b’=1 : Hyb 2] |
+ | Pr[b’=1 : Hyb 2]-Pr[b’=1 : Hyb 3] |

If IPr[b’=1:IND-Exp,]-Pr[b’=1:IND-Exp,]l2¢,
Then for some i=0,1,2,

|Pr[b’=1:Hyb i]-Pr[b’=1:Hyb i+1]| 2 /3



An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 0 from Hybrid 1
with advantage €/3

k € K x € {0,1}n
@ o M @ o M
1 ¢ € G(k)em, 1€ € xem,
N\ N\«

b’ b’



An Alternate Proof: Hybrids

Suppose 2N distinguishes Hybrid 0 from Hybrid 1
with advantage €/3 = Construct

X

G(s) or truly random)

<
(either

c € xem,

_—_—_—__m-_——

_—_—_—_—_—_—_—_—_—_—_—_d



An Alternate Proof: Hybrids

Suppose . distinguishes Hybrid 0 from Hybrid 1
with advantage €/3 = Construct t
If
If

t is given G(s) for arandoms, = sees Hybrid 0

l is given x for a random x, & sees Hybrid 1

Therefore, advantage of ﬁt is equal to advantage of -2
which is at least €/3 = Contradiction!



An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 1 from Hybrid 2
with advantage €/3

x € 10,1} x € 10,1}
@ o mEM @ o mEM
*w ’\<c < xem, N - < xem,

b’ b’



An Alternate Proof: Hybrids

Suppose = distj from Hybrid 2

with advanta

x € §0,1}sW

) \ X®ml




An Alternate Proof: Hybrids

Suppose N distinguishes Hybrid 2 from Hybrid 3
with advantage €/3

x € {0,1}n k € K
@ o, <M @ o m <M
I\ & € xom, 1\ ¢ € G(k)em,

1' Proof essentially identical to }
b Hybrid O/Hybrid 1 case




Reminders

PR1 Part 1 Due Tuesday, Feb 20th



