COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously on COS 433...

Perfect Security for Multiple Messages

Definition: A stateless scheme (**Enc,Dec**) has **perfect** secrecy for **n** messages if, for any two sequences of messages $(m_0^{(i)})_{i \in [d]}$, $(m_1^{(i)})_{i \in [d]} \in M^d$

$$(Enc(K, m_0^{(i)}))_{i \in [d]} \stackrel{d}{=} (Enc(K, m_1^{(i)}))_{i \in [d]}$$

Notation: $(f(i))_{i \in [d]} = (f(1), f(2), ..., f(n))$

Theorem: No stateless deterministic encryption scheme can have perfect security for multiple messages

Randomized Encryption

Syntax:

- Key space **K** (usually $\{0,1\}^{\lambda}$)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: K×M → C (potentially probabilistic)
- Dec: K×C → M (usually deterministic)

Correctness:

• For all $k \in K$, $m \in M$, Pr[Dec(k, Enc(k,m)) = m] = 1 **Theorem:** No stateless *randomized* encryption scheme can have perfect security for multiple messages

What do we do now?

Tolerate tiny probability of distinguishing

• If $Pr[c^{(0)} = c^{(1)}] = 2^{-128}$, in reality never going to happen

How small is ok?

• Usually 2⁻⁸⁰, 2⁻¹²⁸, or maybe 2⁻²⁵⁶

Next time: formalize weaker notion of secrecy to allow for small probability of detection

Statistical Distance

Given two distributions D_1 , D_2 over a set X, define

$$\Delta(D_1,D_2) = \frac{1}{2}\sum_{x} | Pr[D_1=x] - Pr[D_2=x] |$$

Observations:

$$0 \le \Delta(D_1, D_2) \le 1$$

$$\Delta(D_1, D_2) = 0 \iff D_1 \stackrel{d}{=} D_2$$

$$\Delta(D_1, D_2) \le \Delta(D_1, D_3) + \Delta(D_3, D_2)$$

$$(\Delta \text{ is a metric})$$

Another View of Statistical Distance

Theorem:
$$\Delta(D_1, D_2) \ge \varepsilon$$
 iff $\exists A$ s.t.
 $Pr[A(D_1) = 1] - Pr[A(D_2) = 1] | \ge \varepsilon$

Terminology: for any A, $|Pr[A(D_1) = 1] - Pr[A(D_2) = 1]|$ is called the "advantage" of A in distinguishing D_1 and D_2

Another View of Statistical Distance

Theorem:
$$\Delta(D_1,D_2) \ge \varepsilon$$
 iff $\exists A$ s.t.
 $Pr[A(D_1) = 1] - Pr[A(D_2) = 1] | \ge \varepsilon$

To lower bound Δ , just need to show adversary \mathbf{A} with that advantage

Examples

 D_1 = Uniform distribution over $\{0,1\}^n$

$$\cdot \Pr[D_1 = x] = 2^{-n}$$

 D_2 = Uniform subject to even parity

• $Pr[D_2=x] = 2^{-(n-1)}$ if x has even parity, 0 otherwise

$$\Delta(D_{1},D_{2}) = \frac{1}{2} \sum_{\text{even } x} |2^{-n} - 2^{-(n-1)}| + \frac{1}{2} \sum_{\text{odd } x} |2^{-n} - 0| = \frac{1}{2} \sum_{\text{even } x} 2^{-n} + \frac{1}{2} \sum_{\text{odd } x} 2^{-n} = \frac{1}{2}$$

Examples

```
D_1 = Uniform over \{1,...,n\}
D_2 = Uniform over \{1,...,n+1\}
\Delta(D_1,D_2) = \frac{1}{2}\sum_{x=1}^{n} |1/n - 1/(n+1)|
                         + \frac{1}{2} |0 - \frac{1}{(n+1)}|
                   = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{n(n+1)} + \frac{1}{2} \frac{1}{(n+1)}
                   = \frac{1}{(n+1)} + \frac{1}{(n+1)} = \frac{1}{(n+1)}
```

Statistical Security

Definition: A scheme (Enc,Dec) has ϵ -statistical secrecy for d messages if \forall two sequences of messages $(m_0^{(i)})_{i \in [d]}$, $(m_1^{(i)})_{i \in [d]} \in M^d$ $\Delta \big[\big(\text{Enc}(K, \, m_0^{(i)} \,) \big)_{i \in [d]},$ $\big(\text{Enc}(K, \, m_1^{(i)} \,) \big)_{i \in [d]} \big] < \epsilon$

We will call such a scheme (d, ε) -secure

Statistical Security

We will consider a scheme "secure" for \mathbf{d} messages if it is $(\mathbf{d}, \mathbf{\epsilon})$ -secure for very small $\mathbf{\epsilon}$

• E.g. **2**⁻⁸⁰, **2**⁻¹²⁸, etc

For comparison: chance of

- Being struck by lightning twice: 2⁻²³
- Winning the lottery: **2**⁻²⁶
- World-ending asteroid while on this slide: 2-46

Stateless Encryption with Multiple Messages

Ex:

$$M = C = \mathbb{Z}_p$$
 (p a prime of size 2^{-128})
 $K = \mathbb{Z}_p^* \times \mathbb{Z}_p$
 $Enc((a,b), m) = (am + b) \mod p$
 $Dec((a,b), c) = (c-b)/a \mod p$

Q: Is this statistically secure for two messages?

Example

Ex:

$$M = \mathbb{Z}_p$$
 (p a prime of size 2^{-128})
 $C = \mathbb{Z}_p^2$ Random in \mathbb{Z}_p
 $K = \mathbb{Z}_p^2$
 $Enc((a,b), m) = (r, (ar+b) + m)$
 $Dec((a,b), (r,c)) = c - (ar+b)$

Q: Is this statistically secure for two messages?

Proof of Example

Let D_b be distribution of $(Enc(k,m_b^{(i)}))_I$ Let D_b be D_b , but conditioned on $r_0 \neq r_1$

Fix
$$\mathbf{r}_0 \neq \mathbf{r}_1$$
, \mathbf{m}_0 , \mathbf{m}_1 , \mathbf{c}_0 , \mathbf{c}_1

$$Pr[ar_0+b+m_0=c_0, ar_1+b+m_1=c_1] = 1/p^2$$

So
$$D_0' \stackrel{d}{=} D_1'$$
 ($\Delta(D_0', D_1') = 0$)

Proof of Example

Lemma: $\Delta(D_1,D_2) \leq \Pr[bad|D_1] + \Pr[bad|D_2] + \Delta(D_1',D_2')$

Where:

- "bad" is some event
- Pr[bad|D_b] is probability "bad" when sampling from D_b
- D_b' is D_b, but conditioned on not "bad"

Proof of Lemma

$$\begin{split} \Delta(D_{1},D_{2}) &= \Sigma_{x} | \ \text{Pr}[D_{1}=x] - \text{Pr}[D_{2}=x] \ | \\ &= \Sigma_{x:bad} | \ \text{Pr}[D_{1}=x] - \text{Pr}[D_{2}=x] \ | \\ &+ \Sigma_{x:good} | \ \text{Pr}[D_{1}=x] - \text{Pr}[D_{2}=x] \ | \\ &\leq \Sigma_{x:bad} | \ \text{Pr}[D_{1}=x] \ | + \Sigma_{x:bad} | \ \text{Pr}[D_{2}=x] \ | \\ &+ \Sigma_{x:good} | \ \text{Pr}[D_{1}=x] - \text{Pr}[D_{2}=x] \ | \\ &\leq \text{Pr}[bad|D_{1}] + \text{Pr}[bad|D_{2}] + \Delta(D_{1,good},D_{2,good}) \end{split}$$

Proof of Example

Let D_b be distribution of ($Enc(k,m_b^{(i)})$)_I Let **bad** be when $r_0=r_1$ Let D_b be D_b , but conditioned on **not bad**

$$Pr[bad|D_b] = 1/p$$

$$\Delta(D_0', D_1') = 0$$

Therefore, $\Delta(D_0, D_1) \leq 2/p$

Summary so Far

Stateless encryption for multiple messages

/

But, key length grows with number of messages

X

And, key length grows with length of message

Limits of Statistical Security

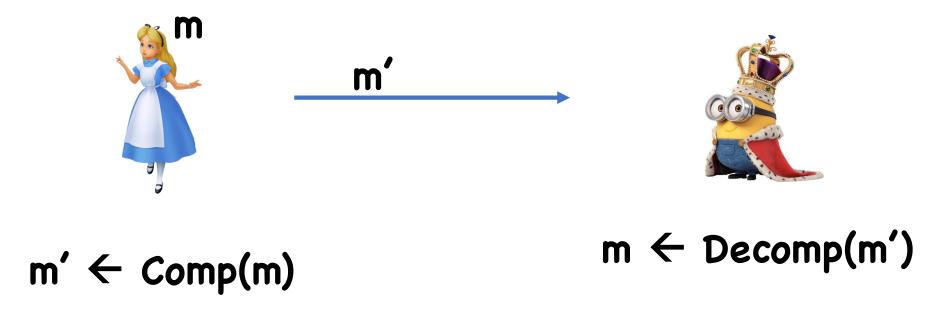
Theorem: Suppose (Enc,Dec) has plaintext space $M = \{0,1\}^n$ and key space $K = \{0,1\}^t$. Moreover, assume it is $(d,\frac{1}{3})$ -secure. Then:

t 2 d n

In other words, the key must be at least as long as the total length of all messages encrypted

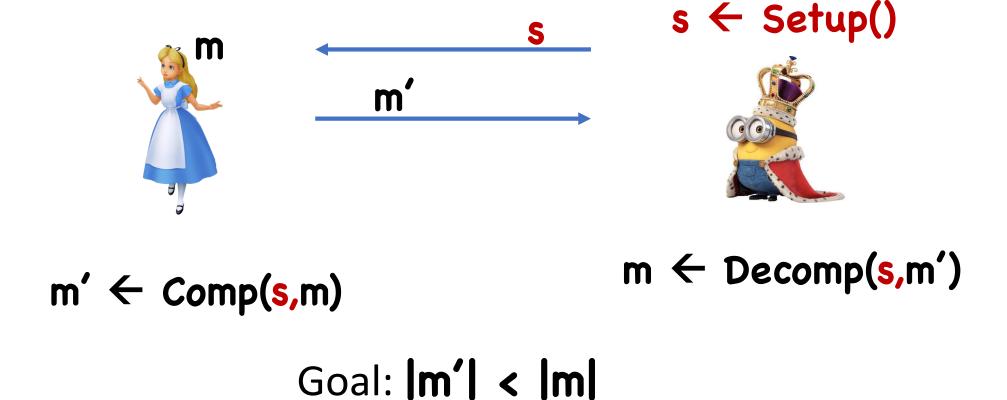
Proof Idea

Use an encryption protocol to build a compression protocol



Goal: |m'| < |m|

For Now: Easier Goal



The Protocol

Let \mathbf{m}_0 be some message in \mathbf{M}

Setup():

- Choose random $k_0 \leftarrow K$
- Let $c_1 \leftarrow Enc(k_0, m_0), ..., c_d \leftarrow Enc(k_0, m_0)$
- Output (c₁,...,c_d)

Comp($(c_1,...,c_d)$, $(m_1,...,m_d)$):

- Find $k,r_1,...,r_d$ such that $c_i = Enc(k,m_i; r_i) \forall i$
- If no such values exist, abort
- Output k

The Protocol

Let $\mathbf{m}_{\mathbf{0}}$ be some message in \mathbf{M}

```
Comp( (c_1,...,c_d), (m_1,...,m_d)):
```

- Find $k,r_1,...,r_d$ such that $c_i = Enc(k,m_i; r_i) \forall i$
- If no such values exist, abort
- Output k

```
Decomp((c_1,...,c_d), k):
```

- Compute $m_i = Dec(k,c_i)$
- Output (m₁,...,m_d)

Analysis of Protocol

If **Comp** succeeds, **Decomp** must succeed by correctness

• Since c_i=Enc(k,m_i; r_i), Dec(k,c_i) must give m_i

Therefore, must figure out when **Comp** succeeds

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

(Probability over the randomness used by **Setup()**)

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

Proof:

- Suppose Comp succeeds with probability 1-p for messages m₁,...,m_d
- Let $A(c_1,...,c_d)$ be the algorithm that runs $Comp((c_1,...,c_d), (m_1,...,m_d))$ and outputs 1 if Comp succeeds
- If $c_i = \text{Enc}(k_0, m_i)$, then $\text{Pr}[A(c_1, ..., c_d)=1] = 1$ • If $c_i = \text{Enc}(k_0, m_0)$, then $\text{Pr}[A(c_1, ..., c_d)=1] = 1-p$
- By (d,ε)statistical security of Enc, p must be ≤ε

Claim: For any sequence of messages $m_1,...,m_d$, Comp succeeds with probability at least $1-\varepsilon$

Claim: For a random sequence of messages $m_1,...,m_d$, Comp succeeds with prob at least $1-\varepsilon$

(Probability over the randomness used by **Setup()** and the random choices of $\mathbf{m_1, ..., m_d}$)

Next step: Removing Setup

We know:

Pr[Comp succeeds:
$$\binom{(c_1,...,c_d)}{m_i \in M} \leftarrow Setup(), \] \ge 1-\epsilon$$

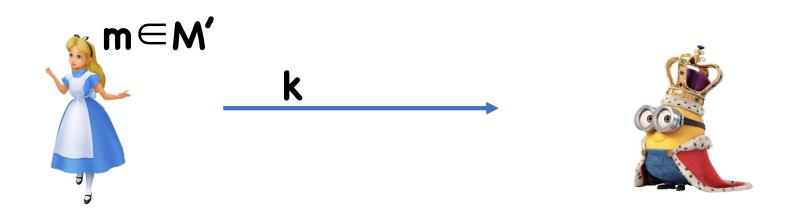
Therefore, there must exist some $(c_1^*,...,c_d^*)$ such that

Pr[Comp succeeds: $m_i \leftarrow M$] $\geq 1-\epsilon$

Define: $M' = \{(m_1,...,m_d): Comp \text{ succeeds}\}$

• Note that $|M'| \ge (1-\epsilon) |M|^d$

The Protocol



Find $k,r_1,...,r_d$ such that $c_i^*=Enc(k,m_i; r_i) \forall i$

For each i, Let $m_i \leftarrow Dec(k,c_i^*)$ Output $(m_1,...,m_d)$

By previous analysis,

- Alice always successfully compresses
- Bob always successfully decompresses

Final Touches

Can compress messages in M' into keys in K

Therefore, it must be that |M'| ≤ |K|

```
Meaning t = log |K|

\geq log |M'|

\geq log [ (1-\epsilon) |M|^d ]

= d log |M| + log [1-\epsilon]

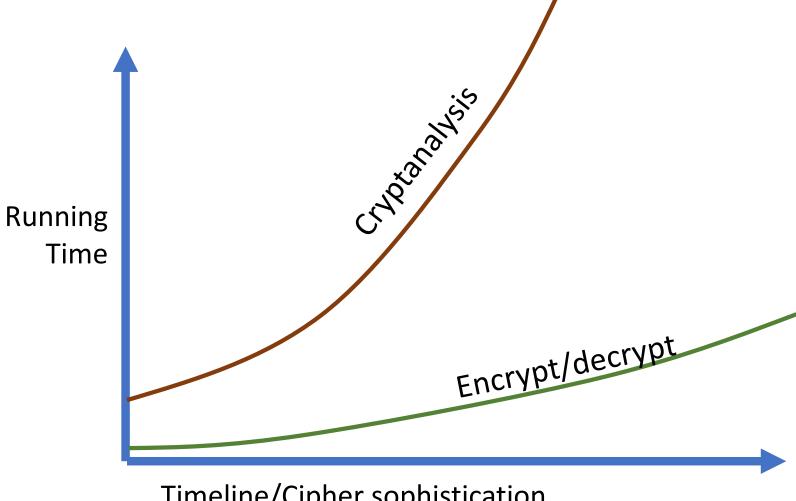
\geq dn - 2\epsilon

\geq dn (as long as \epsilon \epsilon \frac{1}{2})
```

Takeaway

If you don't want to physically exchange keys frequently, you cannot obtain statistical security

So, now what?



Timeline/Cipher sophistication

Computational Security

We are ok if adversary takes a really long time

Usually measure in machine operations

- Though depends on architecture, so rough approx
- 280, 2128, or maybe 2256 are probably ok

For comparison:

- Lifetime of universe in nanoseconds: 2⁵⁸
- Number of atoms in known universe: 2²⁶⁵

Brute Force Attacks

Simply try every key until find right one

Relevant as long as key length is smaller than total length of messages encrypted

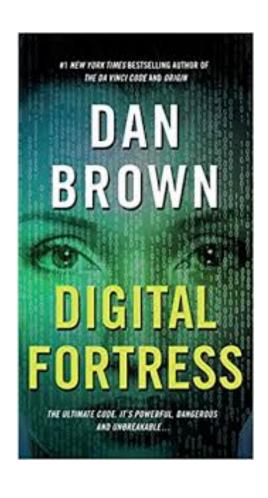
If keys have length λ , 2^{λ} is upper bound on attack

Crypto and P vs NP

What if P = NP?

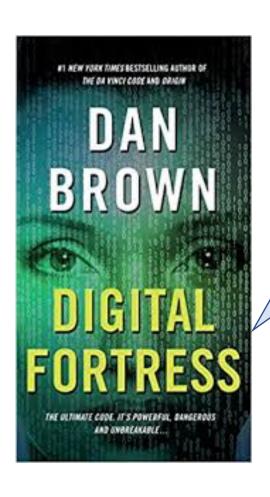
From this point forward, almost all crypto we will see depends on computational assumptions

Holiwudd Criptoe!



[TRANSLTR]'s three million processors would all work in parallel ... trying every new permutation as they went

Holiwudd Criptoe!



"What's the longest you've ever seen TRANSLTR take to break a code?"

"About an hour, but it had a ridiculously long key—ten thousand bits"

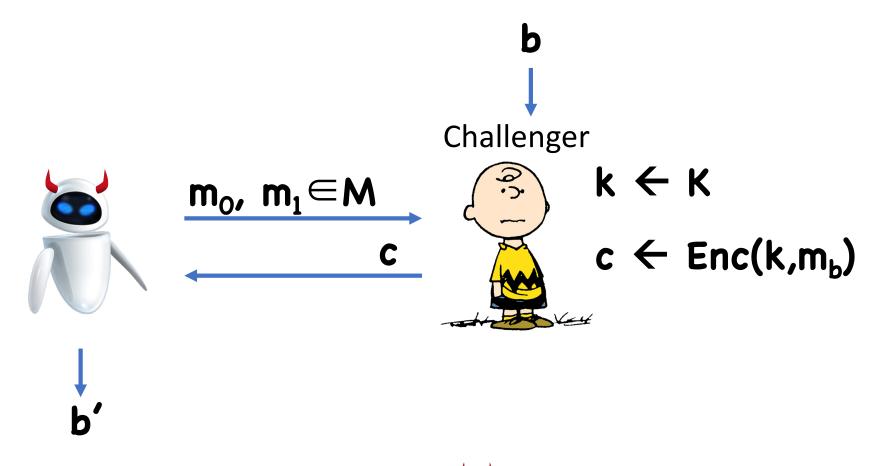
Defining Security

Consider an attacker as a probabilistic efficient algorithm

Attacker gets to choose the messages

All attacker has to do is distinguish them

Security Experiment/Game (One-time setting)



IND-Exp_b()

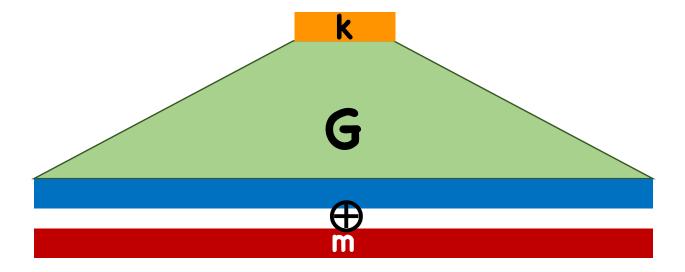
Security Definition (One-time setting)

Definition: (Enc, Dec) has (†,ε)-ciphertext indistinguishability if, for all ** running in time at most †

$$Pr[1←IND-Exp0(?)]$$
- Pr[1←IND-Exp₁(?)] ≤ ε

Construction with | k | << | m |

Idea: use OTP, but have key generated by some expanding function **G**



What Do We Want Out of **G**?

Definition: $G:\{0,1\}^{\lambda} \rightarrow \{0,1\}^{n}$ is a **(†,\varepsilon)**-secure **pseudorandom generator** (PRG) if:

- n > λ
- **G** is deterministic
- For all in running in time at most t,

$$Pr[\lambda (G(s))=1:s\leftarrow\{0,1\}^{\lambda}]$$

$$-Pr[\lambda (x)=1:x\leftarrow\{0,1\}^{n}] \leq \epsilon$$

Secure PRG -> Ciphertext Indistinguishability

$$K = \{0,1\}^{\lambda}$$

 $M = \{0,1\}^{n}$
 $C = \{0,1\}^{n}$

Enc(k,m) = PRG(k)
$$\oplus$$
 m
Dec(k,c) = PRG(k) \oplus c

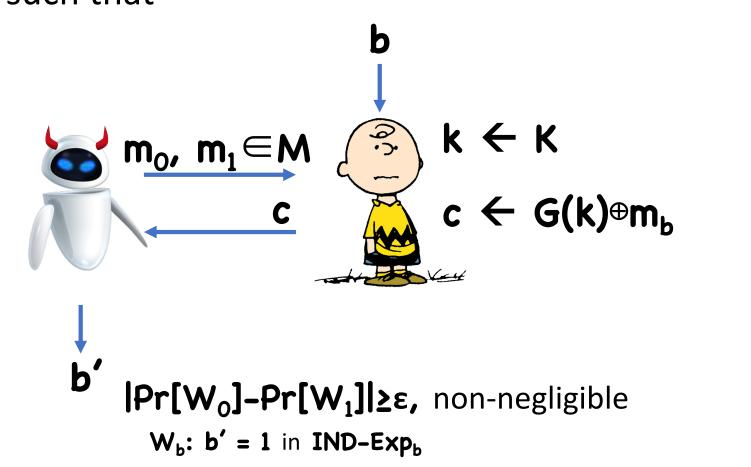
Intuitively, security is obvious:

- PRG(k) "looks" random, so should completely hide m
- However, formalizing this argument is non-trivial.

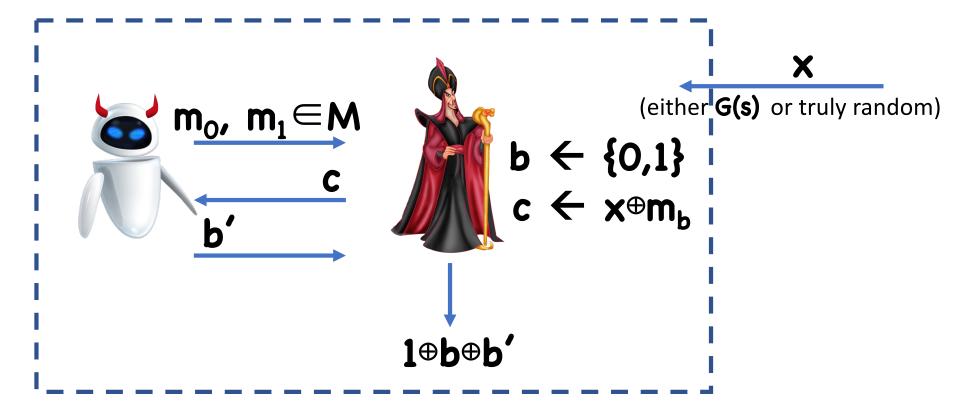
Solution: reductions

 Assume toward contradiction an adversary for the encryption scheme, derive an adversary for the PRG

Assume towards contradiction that there is a 🤼 such that

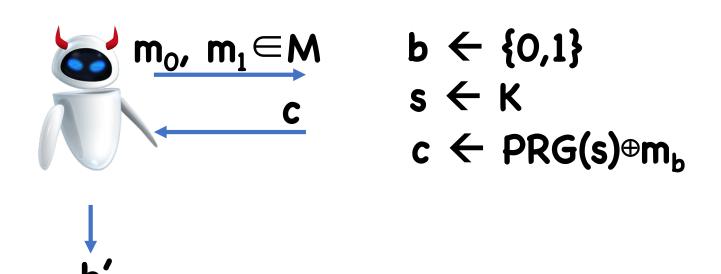


Use to build . will run as a subroutine, and pretend to be



Case 1: x = PRG(s) for a random seed s

• "sees" IND-Exp_b for a random bit b

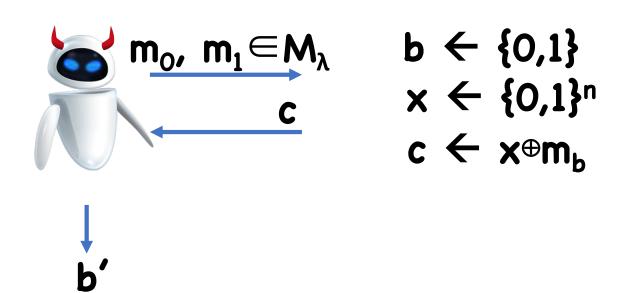


Case 1: x = PRG(s) for a random seed s

• "sees" **IND-Exp**_b for a random bit **b**

Case 2: x is truly random

• * "sees" OTP encryption



Case 2: x is truly random

- "sees" OTP encryption
- Therefore **Pr[b'=1 | b=0] = Pr[b'=1 | b=1]**

Putting it together:

•
$$Pr[\lambda(G(s))=1:s \leftarrow \{0,1\}^{\lambda}] = \frac{1}{2}(1 \pm \epsilon(\lambda))$$

•
$$Pr[(x)=1:x \leftarrow \{0,1\}^n] = \frac{1}{2}$$

• Absolute Difference: $1/2\epsilon_{\bullet} \Rightarrow$ Contradiction!

Thm: If **G** is a $(t+t', \varepsilon/2)$ -secure PRG, then **(Enc,Dec)** is has (t,ε) -ciphertext indistinguishability, where t' is the time to:

- Flip a random bit b
- XOR two **n**-bit strings

Thm: If G is a $(t+poly, \epsilon/2)$ -secure PRG, then (Enc, Dec) is has (t,ϵ) -ciphertext indistinguishability

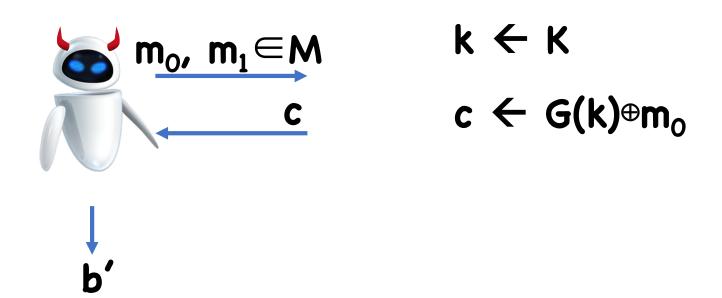
Idea: define sequence of "hybrid" experiments "between" **IND-Exp**₀ and **IND-Exp**₁

In each hybrid, make small change from previous hybrid

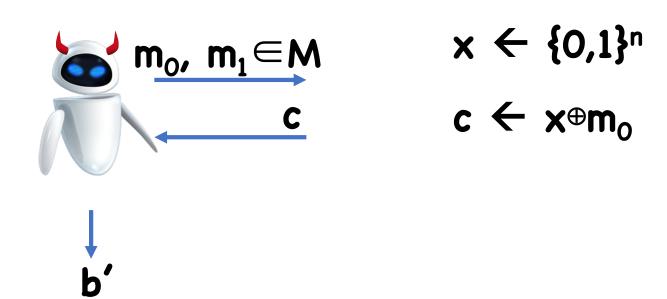
Hopefully, each small change is undetectable

Using triangle inequality, overall change from **IND**- $\mathbf{Exp_0}$ and $\mathbf{IND-Exp_1}$ is undetectable

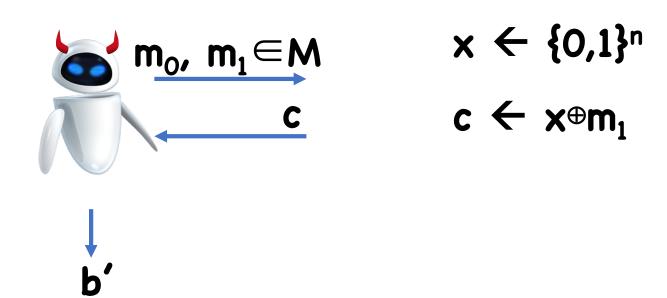
Hybrid 0: IND-Expo



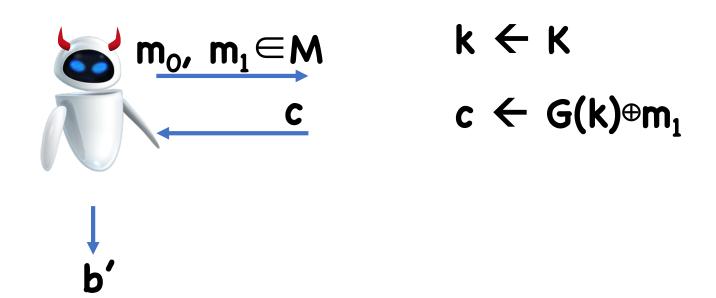
Hybrid 1:



Hybrid 2:

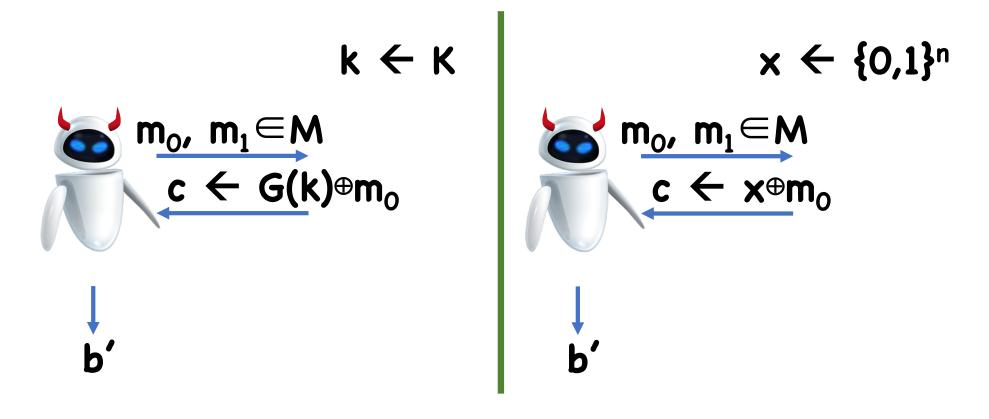


Hybrid 3: IND-Exp₁

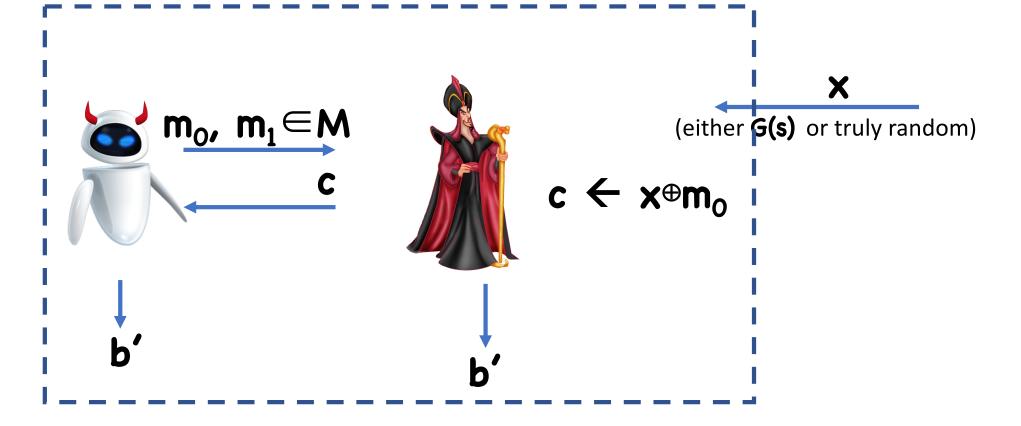


```
| Pr[b'=1 : IND-Exp_0]-Pr[b'=1 : IND-Exp_1] |
      = | Pr[b'=1 : Hyb 0] - Pr[b'=1 : Hyb 3] |
      ≤ | Pr[b'=1 : Hyb 0]-Pr[b'=1 : Hyb 1] |
        + | Pr[b'=1 : Hyb 1]-Pr[b'=1 : Hyb 2] |
        + | Pr[b'=1 : Hyb 2]-Pr[b'=1 : Hyb 3] |
If |Pr[b'=1:IND-Exp_0]-Pr[b'=1:IND-Exp_1]| \ge \varepsilon,
Then for some i=0,1,2,
      |Pr[b'=1:Hyb i]-Pr[b'=1:Hyb i+1]| \ge \varepsilon/3
```

Suppose \mathbb{R} distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$



Suppose \mathbb{R} distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\varepsilon/3$ \Rightarrow Construct

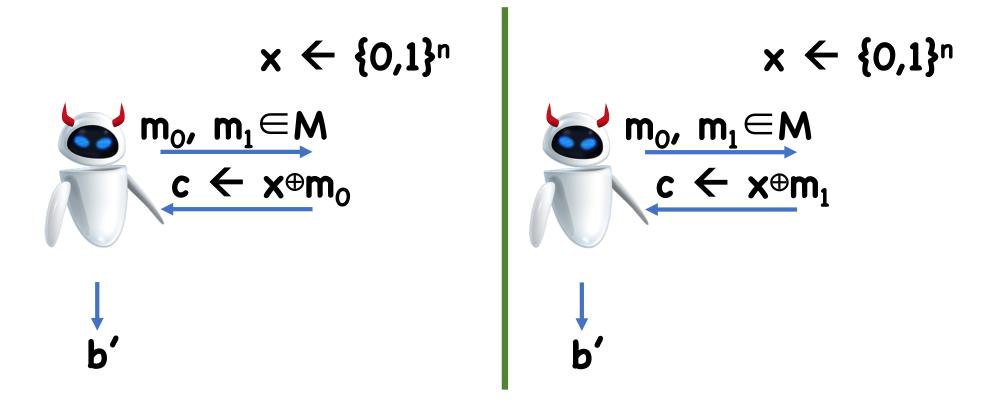


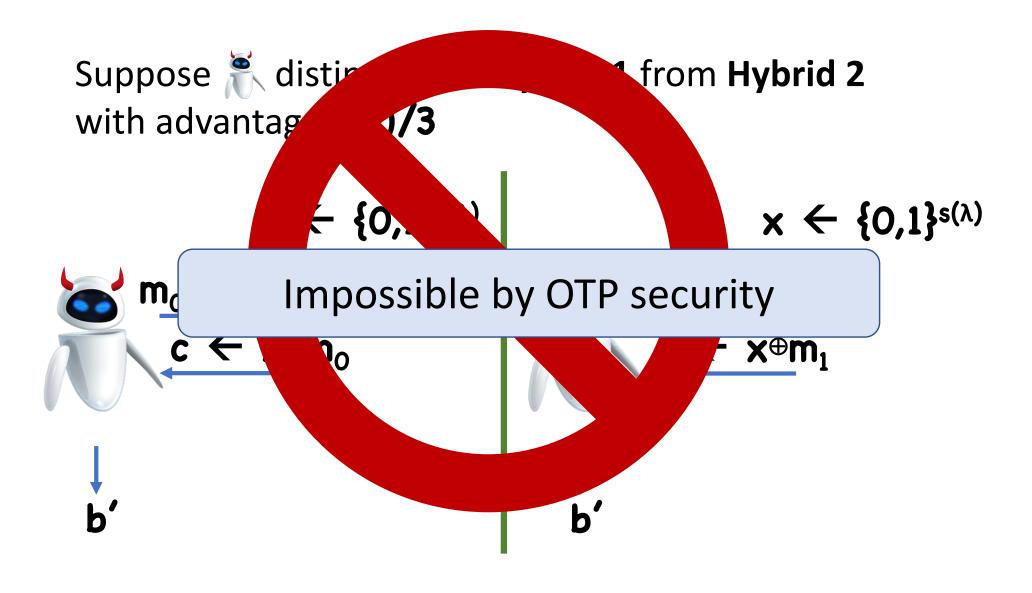
Suppose $\rat{\mathbb{R}}$ distinguishes **Hybrid 0** from **Hybrid 1** with advantage $\epsilon/3$ \Rightarrow Construct

If is given **G(s)** for a random **s**, sees **Hybrid 0**If is given x for a random **x**, sees **Hybrid 1**

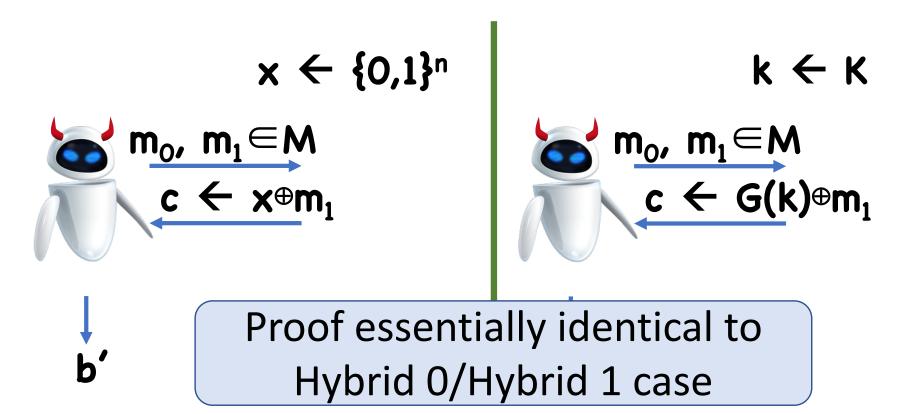
Therefore, advantage of) is equal to advantage of) which is at least $\epsilon/3 \Rightarrow$ Contradiction!

Suppose \mathbb{R} distinguishes **Hybrid 1** from **Hybrid 2** with advantage $\varepsilon/3$





Suppose \Re distinguishes **Hybrid 2** from **Hybrid 3** with advantage $\varepsilon/3$



Reminders

PR1 Part 1 Due Tuesday, Feb 20th