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Takeaway: Crypto is Hard

Designing crypto is hard, even experts get it wrong
e Just because | don’t know how to break it doesn’t
mean someone else can’t

Unexpected attack vectors

* Known/chosen plaintext attack
* Chosen ciphertext attack

* Timing attack

* Power analysis

* Acoustic cryptanalysis



Takeaway: Crypto is Hard

Don’t design your own crypto
* You'll probably get it wrong
* Use peer-reviewed schemes instead

Actually, don’t even implement your own crypt
* Instead, use well studied crypto library built and

tested by many experts



Takeaway: Need for Formalism

For most of history, cipher design and usage based
largely on intuition
* Intuition in many cases false

Instead, need to formally define the usage scenario
* Prove that scheme is secure in scenario
* Only use scheme in that scenario



Takeaway: Importance of Computers

Running
Time

Timeline/Cipher sophistication



Takeaway: Importance of Computers
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Modern Cryptography



Encryption Basics (for now)

Syntax:

* Key space K (usually §{0,1}})

* Message space M (usually §0,1}")
* Ciphertext space C (usually §0,1}™)
*Enc: KxM - C

*Dec: KxC > M

Correctness (aka Completeness):
* ForallkEK, mEM, Dec(k, Enc(k,m) ) = m



The One-Time Pad

Key space K = §0,1}"
Message space M = {0,1}"
Ciphertext space C = {0,1}n

Enc(k, m) = k © m
Dec(k, c) =k @ ¢

Correctness:
Dec(k, Enc(k, m)) = ke(kem)
= (k@k)®m
= Oom

=m



Encryption Security?

Questions to think about:

W

nat kind of messages?

W

nat does the adversary already know?

W

nat information are we trying to protect?

Examples:

* Messages are always either “attack at dawn” or
“attack at dusk”, trying to hide which is the case

* Messages are status updates (“<person> reports
<event> at <location>"). Which data is sensitive?



Encryption Security?

Questions to think about:

W

nat kind of messages?

W

nat does the adversary already know?

W

nat information are we trying to protect?

Goal:

Rather than design a separate system for
each use case, design a system that works

in all possible settings



Semantic Security

ldea:

* Plaintext comes from an arbitrary distribution

e Adversary initially has some information about the
plaintext

* Seeing the ciphertext should not reveal any more
information

* Model unknown key by assuming it is chosen
uniformly at random



(Perfect) Semantic Security

/Definition: A scheme (Enc,Dec) is (perfectly)

semantically secure if, for all:

~

e Distributions D on M Plaintext distribution
* Functions I:M>{0,1} Info adv gets
+ Functions :M>{0 l}* Info adv tries to learn
° ’
* Functions A:Cx{0,1}*>{0,1} Ad\{ersary
“Simulator”

There exists a function S:{0,1}*=>{0,1}" such that
Pr[ A( Enc(k,m) , I(m) ) = f(m) ]

= Pr[ S( I(m) ) = f(m) ]
 where probabilities are taken over KEK, m€D




Semantic Security

Captures what we want out of an encryption scheme
But, complicated, with many moving parts

Want: something simpler... like perfect secrecy



Perfect Secrecy

Perfect secrecy is a great definition
* Simple
* Easy to prove

However, it doesn’t obviously capture what we need
* What does adversary learn about plaintext?



Semantic Security = Perfect Secrecy

/Theorem: A scheme (Enc,Dec) is perfectly A
semantically secure if and only if it has perfect
\.secrecy )

Corollary: the One-Time Pad is perfectly
semantically secure




Perfect Secrecy = Semantic Security

Given arbitrary:

 Distribution D on M

* Function I:M->{0,1}"

* Function f:M>{0,1}"

* Function A:Cx{0,1}*>{0,1}"

Know: E(K, m,) g E(K, m,)

Goal: Construct S:§0,1}"=>{0,1}" such that
Pr[ A( Enc(k,m) , I(m) ) = f(m) ]
= Pr[ S( I(m) ) = f(m) ]



Perfect Secrecy = Semantic Security

S(i):

* Choose randomk € K
 Set ¢ € Enc(k,0)

* Run and output A(c,i)

Prl S( I(m) ) = f(m) ]
= Pr[ A( Enc(k,0) , I(m) ) = f(m) : m€<D ]

= 2. c Pr[D=m] Pr[Enc(K,0)=c] Pr[ A(c,I(m)) = f(m) ]
= 2., ¢ Pr[D=m] Pr[Enc(K,m)=c] Pr[ A(c,I(m)) = f(m) ]
= Pr[ A( Enc(k,m) , I(m) ) = f(m) ]



Semantic Security = Perfect Secrecy

Proof by contrapositive:
* Assume Im,, m, s.t. Enc(K, m,) : Enc(K, m,)
* Devise D,I,f,A such that no S exists

D: pick b€{0,1} at random, output m,

I: empty

f(m,) = b

A(c) = 1 iff Pr[Enc(K,m,) = c] > Enc(K,m,) = c]



Semantic Security = Perfect Secrecy

Let T = {c: Pr[Enc(K,m,) = c] > Enc(K,m,) = cl}

Pr[ A( Enc(K,m) ) = f(m) : mé€D]

= % Pr[A( Enc(K,m,) ) =0 ]
+ % Pr[A( Enc(Km,) ) =11

= % Pr[ Enc(K,m,) ¢ T)
+ % Pr[ Enc(K,m,) € T]

=% + % (Pr[ Enc(K,m,) € T}
- Pr[ Enc(K,m,) € T])



Semantic Security = Perfect Secrecy

Pr[ Enc(K,m,) € T ]
= 2.1 PrlEnc(K,m,) = c]
=1 - 3. Pr[Enc(K,m,) = c]

Pr[ Enc(K,m,) € T] - Pr[ Enc(K,m,) € T}
= 2.7 Pr[Enc(K,m,) = c] - Pr[Enc(K,mo) = c]
= 2.7 PrlEnc(K,m,) = c] - Pr[Enc(K,m,) = c]
= % 2. | Pr[Pr[Enc(K,m,)=c] - Pr[Enc(K,my)=c] |



Perfect Secrecy vs Semantic Security

Perfect secrecy is much easier to reason about, so we
will usually analyze schemes for perfect secrecy

However, semantic security is really the definition we
care about, so always keep in mind



Proper Use Case for Perfect Security

* Message can come from any distribution
* Adversary can know anything about message
* Encryption hides anything

 But, definition only says something aboutan X
adversary that sees a single message
= |f two messages, no security guarantee

* Assumes no side-channels X
e Assumes key is uniformly random X



One-time Pad

We know OTP is perfectly semantically secure

But, we know it is insecure if:
* Used to encrypt multiple messages
* Key length shorter than message



Variable-Length Messages

OTP has message-length {0,1}" where n is the key
length

In practice, fixing the message size is unreasonable

So instead, will allow for smaller messages to be
encrypted



Variable-Length OTP

Key space K = {0,1}"
Message space M = {0,1}:"
Ciphertext space C = §0,1}<"

Enc(k, m) = k[l, Iml 1 em
DQC(k, C) = k[l, 1] ® €

Correctness:
Dec(k, Enc(k, m)) = ke(kem)
= (kek)om
= 0Oem

=m



Does the variable length OTP
have perfect secrecy according
to our definition?



Ciphertext Size

~

/Theorem: For scheme with perfect secrecy, the
expected ciphertext size for any message, E[

\JEnc(K,m)| ], is at least (log, IMI) - 3 .




Proof

Fix a key K.

Let Cy , be set of ciphertexts ¢ s.t. Pr[Enc(k,m)=c]>0
By correctness, each Cy ., as m varies are disjoint and
non-empty

* If cECy ,, and ¢ ECy v, then m’=Dec(k,c)=m

Therefore, therefore |U, C | 2 IMI



Proof

U Ceml 2 IMI

Therefore, if we encrypt a random message, the
expects size of a ciphertext is at least

3. min( lel : ceC ) / IMI

min( lcl : ¢cEC,,,) = t for at most 2 different m



Proof

Let r = floor(log,IMI)

3., min( lcl : cEC, ) / IMI
= (1x0+2x1+4x2+...+2™x(r-1)

+(IMI-(27-1))xr )/IM|
= (27(r-2)+2 + (IM|-(27-1))xr ) / IM|
= (r-2(27-1) + IMIxr) / IMI
2 (0-2IMI + IMIxr)/IM| = r-2



Proof

Therefore, for a random message, the expected
ciphertext length for any key is at least log,|M|-3

Must also be true for a random key k

By perfect secrecy, for any messages m,,m;
Ex[ |Enc(K,mo)l ] = E[ [Enc(K,m,)l ]

Therefore,
= Exml [Enc(K,M)I ] 2 log,IMI-3



Variable-Length Messages

For perfect secrecy of variable length messages, must
have expected ciphertext length for short messages
almost as long as longest messages

In practice, very undesirable
* What if | want to either send a 100mb attachment,
or just a message “How are you?”

Therefore, we usually allow message length to be
revealed



(Perfect) Semantic Security for
Variable Length Messages

D

efinition: A scheme (Enc,Dec) is (perfectly)

semantically secure if, for all:
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Perfect Secrecy For Variable
_ength Messages

/Definition: A scheme (Enc,Dec) has perfect N
secrecy if, for any two messages m,, m; where
Imo| = Imy|,

N Enc(K, m,) = Enc(K, m,) .

Easy to adapt earlier proof to show:

Theorem: A scheme (Enc,Dec) is semantically
secure if and only if it has perfect secrecy




Variable-Length OTP

Key space K = {0,1}"
Message space M = {O'I}sn
Ciphertext space C = {0,1}*"

Enc(k, m) = k[ 1, Iml ] em
DQC(k, C) = k[ Lm]®C

[Theorem: Variable-Length OTP has perfect secrecy j




Re-using the OTP

What if we have a 100mb long key K, but encrypt
only Imb?

Can’t use first Imb of K again, but remaining 99mb is
still usable

However, basic OTP definition does not allow us to
re-use the key ever



Syntax for Stateful Encryption

Syntax:

* Key space K,Message space M,Ciphertext space C
 State Space S

Init: §} > S

* Enc: KxMxS > CxS

* Dec: KxCxS > MxS

State, € Init()
(c,, state,) € Enc(k,m,,state,)
(c,, state,) € Enc(k,m,,state,)



Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP
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Reusing the OTP
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Reusing the OTP




Reusing the OTP




Reusing the OTP




Reusing the OTP
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Problem

In real world, messages aren’t always synchronous

What happens if Alice and Bob try to send message
at the same time?

They will both use the same part of the key!



Problem
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Solution

Alice and Bob have two keys
* One for communication from Alice to Bob
* One for communication from Bob to Alice

Can obtain two logical keys from one by splitting key
in half
* Ex: odd bits form K53, even bits form Kg 4



Reusing the OTP

kA%B kA%B
k89 A kB%A




Still A Problem

In real world, messages aren’t always synchronous

Also, sometimes messages arrive out of order or get

dropped

* Need to be very careful to make sure decryption
succeeds

These difficulties exist in any stateful encryption
* For this course, we will generally consider only
stateless encryption



Perfect Security for Multiple Messages

/Definition: A stateless scheme (Enc,Dec) has perfect\
secrecy for n messages if, for any two sequences of

messages (Mo)icmy » (M) icm € M

(Enc(K, mo® ))ie[n] £ (Enc(k, m® ))ie[n]
\ J

Notation:( f(l) )iE[n] = ( F(l), f(z): ooy f(ﬂ) )



Stateless Encryption with Multiple Messages

Ex:

M=C-= ZP (p a prime)

K - Z * X ZP

Enc( Ea,b), m) = (am + b) mod p
Dec( (a,b), ¢) = (c-b)/a mod p

Q: Is this perfectly secure for two messages?



-

-

Theorem: No stateless deterministic
encryption scheme can have perfect security
for multiple messages

J




Randomized Encryption

Syntax:

* Key space K (usually £0,1}")

* Message space M (usually §0,1}")

* Ciphertext space C (usually §0,1}™)

* Enc: KxM > C (potentially probabilistic)
* Dec: KxC 2> M (usually deterministic)

Correctness:



Randomized Encryption

Syntax:

* Key space K (usually £0,1}")

* Message space M (usually §0,1}")

* Ciphertext space C (usually §0,1}™)

* Enc: KxM > C (potentially probabilistic)
* Dec: KxC 2> M (usually deterministic)

Correctness:
* Forall KEK, mEM,
Pr[ Dec(k, Enc(k,m) ) =m ] =

1



Stateless Encryption with Multiple Messages

Ex:

M = ZP (p a prime)

C = sz Random in ZP
K=17.2

Enc( (a,b), m) = (r, (ar+b) + m )
Dec( (a,b), (r,c) ) = ¢ - (ar+b)

Q: Is this perfectly secure for two messages?



Proof of Easy Case

Let (Enc,Dec) be stateless, deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:
* (@, c) = (Enc(K, my ), Enc(K, myt)) )
= ¢0) = ¢ (by determinism)

(@, cW) = ( Enc(K, m(® ), Enc(K, m,1)))
= ¢ ¢ ¢ (by correctness)



Generalize to Randomized Encryption

Let (Enc,Dec) be stateless,deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:

(@, c) = (Enc(K, my, ), Enc(K, myt)) )
— 9??7?

*(c@, cW) = ( Enc(K, m(® ), Enc(K, m,1)))
= ¢ ¢ ¢ (by correctness)



Generalize to Randomized Encryption

(c@,c) =(Enc(K, m), Enc(K, m) )

Pr[c® = c] ?

* Fix k

* Conditioned on k, ¢(®, ¢() are two independent
samples from same distribution Enc(k, m)

Lemma: Given any distribution D over a finite
set X, Pr[Y=Y’': YED, Y €D] 2 1/IX|

* Therefore, Pr[c(® = ¢()] is non-zero



Generalize to Randomized Encryption

Let (Enc,Dec) be stateless, deterministic

Let mo(o) - mo(l)
Let m,(® # m,(®)

Consider distributions of encryptions:
* (@, c) = (Enc(K, my® ), Enc(K, m®) )
= Pr[c® =cV] > 0

*(c@, c®) = (Enc(K, m© ), Enc(K, m®) )
= Pr[c® =cV] =0



What do we do now?

Tolerate tiny probability of distinguishing
e If Pr[c(® = c()] = 2-128 in reality never going to
happen

How small is ok?
e Usually 2-80, 2-128 or maybe 2-258

Next time: formalize weaker notion of secrecy to
allow for small probability of detection



Reminders

HW1 Due Tomorrow (Feb 13th)

Start working on PR1
* Part 1 is due next week (Feb 20t")



