COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2017

Previously...

One-way Functions

The minimal assumption for crypto

Syntax:

* Domain D

e Range R

* FunctionF: D 2 R

No correctness properties other than deterministic

Security

/Definition: F is (t,€)-One-Way if, for all %running A
in time at most t, ’

PrF(x)=F(y):y €} (F(x)),x€D] < €

\

Hardcore Bits

Let F be a one-way function with domain D, range R

" Definition: A function h:D>{0,1} is a (t,€)- A

hardcore bit for F if, for any & running in time at
most t, g
| Prl1€ 7 (F(x), h(x)), x<D]
= Prl1€7(F(x), b), x€D,b<{0,1}] | < €

In other words, even given F(x), hard to guess h(x)

Plus arrows from everything
to one-way functions

Today

Exchanging keys

Previously

¢ = Enc(k,m)

l

_J

i.l m = Dec(k,c)

Previously

_J et
Lm,MAC(k,m) @ ' ¢’
> /

*

‘\-i't
t"‘\

® i)

1\ > Glas

Ver(k,m’,c’)

Today

Where do Alice and Bob get their shared key from?

Traditional Approach

Limitations

Time consuming
Not realistic in many situations
* Do you really want to send a courier to every

website you want to communicate with

Doesn’t scale well
* Imagine 1M people communicating with 1M people

If not meeting in person, need to trust courier

Public Key Distribution

Public Key Distribution

Public Key Distribution

Public Key Distribution

Interactive Protocols

Pair of interactive (randomized) algorithms A, B

A(x) (- - B(y)
l Transcript Trans
OA OB

Write (Trans,0,,0s) €< (A,B)(x,Yy)

Public Key Distribution

Pair of interactive algorithms A,B

Correctness:
Prlo,=05: (Trans,0,,05)<(A,B)()] = 1

Shared key is K := 0,=04
* Define (Trans, k)< (A,B)()

Security: (Trans,K) is computationally
indistinguishable from (Trans,k’) where k' €K

Matrix Multiplication Approach

‘{\ \
plll Y
-

BEZ M
A€B!

Matrix Multiplication Approach

‘{\ \
plll Y
-

w Glam

V&)
wEB-y

Matrix Multiplication Approach

[. w Ga=
BéZqM véZqA
AEB-! wEB-v

Matrix Multiplication Approach

@: 3

L.

‘{\ \
plll Y
-

V&)
wEB-y

Running Times?

Bob: O(A2)
Eve: O(A3)

Running Times?

Bob: O(A2)
Eve: O(A®) where w<2.373
Alice: O(Av)

Different Approach:

e Start withA =B =1

* Repeatedly apply random elementary row ops to A,
inverse to B

e Output (A,B)

Running Times?

Bob: O(A2)
Eve: O(A®) where w<2.373

Alice: O(A*)

s N
Assuming Matrix Multiplication exponent w > 2,
adversary must work harder than honest users

[J

inverseto B
e Output (A,B)

Merkle Puzzles

Let H be some hash function with domain [A]=£1, ...,A}

A {A}
[’
'

al,...,&fé[)\]
A € H(a,)

Merkle Puzzles

Let H be some hash function with domain [A]=£1, ...,A}

A, B.

B {A} o {B:} &
a,,...,a;<[A] b,,...,.b;<[A]
A, € H(a) b, < H(b,)

1

ai S.t. A|E{Bl} bi S.t. B|E{A|}

Analysis

Protocol succeeds iff:
* H is injective (why?)

« {A}n{B;}#2 (equiv, {a;}n{b;}#2)
What does t need to be to make {A;}n{B;}#2 ?

Treating H as ideal hash function (random oracle),
how many queries does adversary need?

Limitations

Both matrix multiplication and Merkle puzzle
approaches have a polynomial gap between honest
users and adversaries

To make impossible for extremely powerful

adversaries, need at least A2 » 280

* Special-purpose hardware means A needs to be
even bigger

* Honest users require time at least A=240

* Possible, but expensive

Limitations

Instead, want want a super-polynomial gap between
honest users and adversary
* Just like everything else we’ve seen in the course

Key Distribution from Obfuscation

Software obfuscation:

* Compile programs into unreadable form
(intentionally)

@P=split//," .URRUU\c8R";@d=split//,"\nrekcah xinU / lreP rehtona tsuJ";sub p{
@p{"r$p","usp"}=(P,P);pipe"r$p", "usp" ; ++$p; ($q*=2)+=$f=!fork;map{$P=$P[$f "ord
(Sp{$_})&6];Sp{$_}=/ "$P/ix?$P:close$_}keys¥p}p;p;p;pP;p;map{$p{$_}=~/"[P.]/&&
close$ }%p;wait until$?;map{/"r/&&<$ >}%p;$ =$d[S$q]l;sleep rand(2)if/\S/;print

Key Distribution from Obfuscation

Let F,F-! be a block cipher

B F .
3
k<{0,1}3*
P<Obf(F(k, <))

Key Distribution from Obfuscation

Let F,F-! be a block cipher

ké{o,;}"
P<ODbf(F(k, -))

Key Distribution from Obfuscation

Let F,F-! be a block cipher

ké{o,;}"
P<ODbf(F(k, -))

}
r&<F-1i(k,x)

Key Distribution From Obfuscation

For decades, many attempts at commercial code

obfuscators
e Simple operations like variable renaming, removing

whitespace, re-ordering operations

Really only a “speed bump” to determined adversaries
* Possible to recover something close to original
program (including cryptographic keys)

4)

Don’t use commercially available obfuscators to
hide cryptographic keys!

Key Distribution From Obfuscation

Recently (2013), new type of obfuscator has been

developed

* Much stronger security guarantees

* Based on mathematical tools

* Many cryptographic applications beyond public key
distribution

Downside?
e Extraordinarily impractical (currently)

Practical Key Exchange

Instead of obfuscating a general PRP, we will define a
specific abstraction that will enable key agreement

Then, we will show how to implement the
abstraction using number theory

Trapdoor Permutations

Domain X

Gen(): outputs (pk,sk)
F(PK,XEX) = yeX
F-i(sk,y) = x

Correctness:

Pr[F-i(sk, F(pk, x)) = x : (pk,sk)<Gen()] =1

Correctness implies F,F-! are deterministic,
permutations

Trapdoor Permutation Security

.y (sk,pk)€Gen()
D pky x€X
N\ y <F(pk,x)
x’ Adversary wins if x=x’

In other words, F(pK, -) is a one-way function

Key Distribution from TDPs

(pk,sk)<Gen()

Analysis

Correctness follows from correctness of TDP

Security:
e By TDP security, adversary cannot compute X
* However, X is distinguishable from a random key

Key Distribution from TDPs

(pk,sk)<Gen()
:“} | P g @) xX€EX
./S) y<F(pk,x) r@..
[u
x<h(Fi(sk,y)) h(x)

h a hardcore bit for F(pk, -)

‘Theorem: If h is (t,€)-secure hardcore bit for
F(pk, -), then protocol is (t,€)-secure

.

Proof:

* (Trans,k) = ((pk.y), h(x))

* Hardcore bit means indistingishable from

((pk,y), b)

Trapdoor Permutations from RSA

Gen():

* Choose random primes p,q

* Let N:pq

* Choose e,d .s.t ed=1 mod (p-1)(q-1)
» Output pk=(N,e), sk=(N,d)

F(pk,x): Outputy = x® mod N

F-1(sk,c): Outputx = y4 mod N

Caveats

RSA is not a true TDP as defined
e Why???
e What’s the domain?

Nonetheless, distinction is not crucial to most

applications
* In particular, works for key agreement protocol

Other TDPs?

For long time, none known

* Still interesting object:
* Useful abstraction in protocol design
* Maybe more will be discovered...

Using obfuscation:
* Let P be a PRP
sk = k, pk = Obf(P(k, -))

Key Distribution from DH

Everyone agrees on group G of prime order p

v@: #-'?

2

i | 2
a<z, / E

7

Key Distribution from DH

Everyone agrees on group G or prime order p

3 ga gb 7o IE

.;.-* | > <
a<Z, /S Gam b€,

7

Key Distribution from DH

Everyone agrees on group G or prime order p

J3 a b .
o 2 S R
a<dy s Gom b€,

7

|

k = (gb)a - gab k = (ga)b - gab

Key Distribution from DH

‘Theorem: If (t,€)-DDH holds on G, then the Diffie-

Hellman protocol is (t,€)-secure
o

Proof:

* (Trans k) = ((g°g°), g*°)
 DDH means indistinguishable from ((g%,g®), g¢)

What if only CDH holds, but DDH is easy?

Known Constructions of Public
Key Distribution

All based on specific number theoretic problems
* RSA, Factoring

 Discrete log, Diffie-Hellman

No known ways to base (solely) on block ciphers,
PRFs, etc.

Is this inherent?

Black Box Separation

i
S,
o
.
h

>~

Theorem: If H is a random oracle, then for any key
agreement protocol in which Alice and Bob make at

most n queries, there is an (inefficient) adversary

than makes at most O(n2) queries
o 4

Therefore, true public key distribution likely hard to
build from one-way functions

If allowing for polynomial hardness gap, then Merkle
is likely optimal from one-way functions

History

1974: Merkle invents his puzzles while an undergrad
1976: Diffie and Hellman publish their scheme

* First public mention of public key crypto

1977: RSA publish their scheme

1997: Revealed that public key crypto was developed at
GCHQ even earlier

e James H. Ellis: idea for public key crypto

* Clifford Cocks: develops RSA

* Malcolm Williamson: develops Diffie-Hellman

2002: RSA win Turing Award
2015: Diffie-Hellman win Turing Award

Next Time

Public key encryption
* Removes need to key exchange in the first place

Public Key Encryption

Public Key Encryption

Public Key Encryption

pK

Public Key Encryption

pK
c<Enc(pk,m)

[

m mé<&Dec(sk,c)

>

Public Key Encryption

mé€&Dec(sk,c)

PKE vs Key Agreement

Key agreement:

:., > /Q:- 2 R
x] ¥
> Chari
> = N
| ’/ 1
/ 5, A
.
‘ ,
. »
- =%

Kng

PKE vs Key Agreement

Key agreement:

;
3 " \ - P
(

Kng

PKE vs Key Agreement

Key agreement:

2
N ’{ ~ ~ <
(

Kng

Kac

PKE vs Key Agreement

Key agreement:
5/';0

For n users,
need O(n?) key
exchanges

PKE vs Key Agreement

PKE:

PKE vs Key Agreement

PKE:

PKE vs Key Agreement

For n users,
need O(n)
public keys

PKE Syntax

Message space M

Algorithms:

* (sk,pk)<Gen(A)
* Enc(pk,m)

* Dec(sk,m)

Correctness:

Pr[Dec(sk,Enc(pk,m)) = m: (sk,pk)<Gen(A)] = 1

Security

One-way security
Semantic Security
CPA security

CCA Security

One-way Security

(sk,pk)<Gen()
m<&M
c<Enc(pk,m)

Semantic Security

(sk,pk)<Gen()

c<Enc(pk,m,)

CPA Security

(sk,pk)<Gen()

c<Enc(pk,m,)

CCA Security

. Pk
\ JG m sk,pk)€Gen
& “mom e (sk,pk) ()
b\ W c<Enc(pk,my)

