COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2018



Number Theory

Zy: integers mod N
ZN*: integers mod N that are relatively prime to N

« xE Zy" iff X has an “inverse” y s.t. xy mod N = 1
* For prime N, Zy ={1,...,N-1}

®(N) = lZN*l

Euler’s theorem: for any X€ 7y, x®™) mod N = 1



Groups

A group is a set G together with a binary operation ®
*g®hEG6

« didentity1s.t. g®1 = 18g = g

- fo(geh) = (feg)eh (Associativity)

* Forallg, 9g!st.geg! = gleg =1

In this class, we will always work with finite
commutative groups

* |Gl<oo

* g°h=heg



Examples of Groups

Additive group 4y
* g®h = g+h mod N

Multiplicative group Zy"
* g®h = gxh mod N



Cyclic Groups

A group G of size N is cyclic if:
3 gs.t. G = {l,9,6% .., gV}

(we call such a g a generator)

Examples:
* Additive group Zy (generator?)

* Multiplicative group Z, for prime p

%
Non-example: Z;g



DLog:
» Given (g,g%), compute a

CDH:
« Given (g,g%,g®), compute g°

DDH:
 Distinguish (g,g“,gb,gc) from (g,g“,gb,g‘“’)

Increasing Difficulty
suondwnssy 1238uUo04ls



G cyclic, order q

/(Gji',s)-Discrete Log:

For any algorithm j running in time at most t,

Prlge€ 7(g.9°): g€6G, a€i] e

\




-

/(G,i',s)-ComputationaI Diffie Hellman:
For any algorithm

% running in time at most t,

Prlget€7-(g.9%g"): g€6, a,b€Z] <e

\




/(G,i',s)-Decisional Diffie Hellman:
For any algorithm "7 running in time at most t,

&>

| Prll1€ | (g, g°,g°g): g€G, a,b€z]
-Pr[lé (g9,9%9%9°): g€G, ab,céZ] |<€

\




Hardness of DLog

Over Z,:

* Brute force: O(p)

* Better algs based on birthday paradox: O(p*)
* Even better heuristic algorithms:

exp( C (log p)/? (log log p)?/3)

* Therefore, plausible assumption:
(ZP*,’rzz(log P)* e=2-(log P)*)



Naor-Reingold PRF

Domain: {0,1}"
Key space: Zq"+1
Range: G

F( (d,bl,bz,...,bn), X ) - ga bIXI bzxz ooe bnxn

Theorem: If (G,t,€)-DDH holds, then the Naor-
Reingold PRF is (t-1’, r, 2rne)-secure




Proof by Hybrids
Hybrids O: H(x) =g‘1 b*! b*? ... byX"

. Xj Xn
Hybrld i: H(X) - Hi(xll'i])bl-l-l 1+l ... bn

* H. is a random function from {0,1} 2> G

Hybrid n: H(x) is truly random



Proof

Suppose adversary can distinguish Hybrid i-=1 from
Hybrid i for some i

Easy to construct adversary that distinguishes:
Xi
X9H|(X) from eri-l(x[l,i-l])b
with advantage 2re



Proof

Suppose adversary makes 2r queries
 Assume wlog that queries are in pairs x]|0, x|I1

What does the adversary see?

* H(x): 2r random elements in G

b,xi .
I : r random elements in G, hy,...,h,
as well as hb, ..., h

* Hi-l(x[l,i-l])



’Lemma: Assuming (G, t,€)-DDH the following
distributions are indistinguishable except with
advantage se:
(9.9%%,9",...,g%,9”%) and
(Q,QXI,Qb xl’ m’gxs’gb xs)

o

Suffices to finish proof of NR-PRF



Proof of Lemma

Hybrids 0: (g'gxl’gb xl’ m’gxs’gb xs)

Hybrid i: o
(Q,QXI,QYI,---,QX',QY', g"i+1,gb Xi+l, mgxs’gb xs)

Hybrid s: (g,9%,9"},...,%5,g"%)



Proof of Lemma

Suppose adversary distinguishes Hybrid i=1 from
Hybrid i

Use adversary to break DDH:

- (Q:QXI:QVI: ---,Qxi'l:gw‘lcu:v:

! \ gxi+l,hxi+l, mgxs’hxs)

<




Proof of Lemma

(9.9%1.,9"%,....g%i-1,g"i-L,u,v, g¥i+1,hXi+1, ...g*s,h*s)
if (g,h,u,v) = (g.gb,g%.g> *i), then Hybrid i-1

If (g,h,u,v) = (g.9°.9%,g"'), then Hybrid i

Therefore, ﬁ%’"’s advantage is the same as ©'s



Further Applications

From NR-PRF can construct:
* CPA-secure encryption

* Block Ciphers

* MACs

* Authenticated Encryption



Parameter Size in Practice?

G = subgroup of Z," of order q, where q| p-1
* In practice, best algorithms require p 2 21924 or so

G = "elliptic curve groups”
* Can set p = 223 to have security
= best attacks run in time 2128

Therefore, elliptic curve groups tend to be much
more efficient = shift to using in practice



Integer Factorization



Integer Factorization

Given an integer N, find it’s prime factors

Studied for centuries, presumed difficult
* Grade school algorithm: O(N/2)
* Better algorithms using birthday paradox: O(N*)
* Even better assuming G. Riemann Hyp.: O(N%)
* Still better heuristic algorithms:
exp( C (log N)'/3 (log log N)2/3 )
* However, all require super-polynomial time in bit-
length of N



{

A,t,€)-Factoring Assumption: For any factoring

algorithm i running in time at most t,

\l

Pri(p.q)< (N):
N=pq and p,q random A-bit primes]<e

~

)

Plausible assumption: (A, 1'=2"1/3, £=2"‘1/3)



Sampling Random Primes

Prime Number Theorem: A random A-bit number is
prime with probability =1/A

Primality Testing: It is possible in polynomial time to
decide if an integer is prime

Fermat Primality Test (randomized, some false positives):
e Choose arandom integer a<{0,...,N-1}

« TestifaN = a mod N

* Repeat many times



Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let XxE %y, YELg

Then there exists a unique integer Z&€ Zy, such that
* X = Z mod p, and
Yy =2 mod q

Proof: z = [py(p! mod q)+qx(q! mod p)] mod N



Quadratic Residues

T . . . . D
Definition: Yy is a quadratic residue mod N if there
exists an X such thaty = x2 mod N. x is called a
“square root” of y

N Y

EX:
* Let p be a prime, and y#£0 a quadratic residue mod
p. How many square roots of y?

* Let N=pq be the product of two primes, y a
quadratic residue mod N. Suppose y#0 mod p
and y#0 mod q. How many square roots?



i running in time at most t,

Prly?=x2 mod N:
y€ K (N,x?)
N=pq and p,q random A-bit primes
X< Zy 1<¢

\

m,t,e)-QR Assumption: For any factoring algorith m\

/




Theorem: If the (A,t,€)-factoring assumption holds,
then the (A, t-1°,2€)-QR assumption holds




Proof

To factor N:

* X7

AS i'(N,xz)

* Output GCD(x-y,N)

Analysis:

* Let {a,b,c,d} be the 4 square roots of X2

. i has no idea which one you chose

* With probability %, y will not be in {+x,-x}

* In this case, we know x=y mod p but x=-y mod q



Collision Resistance from
Factoring

Let N=pq, y a QR mod N
Suppose =1 isnota QR mod N

Hashing key: (N,y)
Domain: {1, ...,(N-1)/2}x{0,1}
Range: {1,...,(N-1)/2}

H( (N,y), (x,b) ): Letz = y*°x2 mod N
. If z€{],...,(N-1)/2}, output 2
* Else, output -z mod N €{1,...,(N-1)/2}



Theorem: If the (A,t,€)-factoring assumption holds,
His (-1',2¢€)-collision resistant

Proof:
* Collision means (X,,bo)#(X;,b;) s.t.
ye0 Xo? = + y®! x;2 mod N

e |f b0=bl' then thxl, but X02=iX12 mOd N
* Xo2=-X,2 mod N not possible. Why?
° XO¢-XI SinCe XO,XIE{I,...,(N-I)/Z}

* If bo#b,, then (Xo/%,)? = £y*! mod N
* -y case not possible. Why?
* (Xo/%,) or (x,/X,) is a square root of y



Choosing N

How to choose N so that -1 is not a QR?

By CRT, need to choose p,q such that -1 is not a QR
mod p or mod q

Fact: if p = 3 mod 4, then -1is not a QR mod p
Fact:if p = 1 mod 4, then -1isa QR mod p



s Composite N Necessary for SQ
to be hard?

Let p be a prime, and suppose p = 3 mod 4
Given a QR x mod p, how to compute square root?

Hint: recall Fermat: xP-!=1 mod p for all x#0

Hint: what is x(P*1)/2 mod p?



Solving Quadratic Equations

In general, solving quadratic equations is:

* Easy over prime moduli

* As hard as factoring over composite moduli



Other Powers?

What about X = x4 mod N? x =2 x® mod N?

The function X 2 x3 mod N appears quite different
* Suppose 3 is relatively prime to p-1 and q-1

* Then X = x3 mod p is injective for x£0
* Let @ be such that 3a = 1 mod p-1
* (x3)a = x1+k(P-1) = x(xP-1)k = x mod p

* By CRT, x = x3 mod N is injective for XEZy"



x3 mod N

What does injectivity mean?

Cannot base of factoring:
Adapt alg for square roots:
e Choose arandom z mod N
* Computey = z3 mod N
* Run inverter on Yy to get a cube root X

* Letp = GCD(z-x, N), q = N/p



RSA Problem

Given

*N = pq,
* e such that GCD(e,p-1)=GCD(e,q-1)=1,
e v=x¢ mod N for a random X

Find X

Injectivity means cannot base hardness on factoring,
but still conjectured to be hard



/(e,t,e)-RSA Assumption: For any factoring \
algorithm i running in time at most t,

Pr[xéi(N,x3 mod N)
N=pq and p,q random A-bit primes s.t.
GCD(3,p-1)=GCD(3,q9-1)=1
X€Zy Jse

(& /




Application: PRGs

Let F(x) = x3 mod N, h(x) = least significant bit

)(—-»F—»

1L

q

Theorem: If (e,t,€)-RSA Assumption holds, then
G(x) = ( F(x), h(x) ) is a (t-1',€")-secure PRG




Crypto from Minimal Assumptions



Many ways to build crypto

We've seen many ways to build crypto
* SPN networks

* LFSR’s

* Discrete Log

* Factoring

Questions:

 Can common techniques be abstracted out as
theorem statements?

* Can every technique be used to build every
application?



One-way Functions

The minimal assumption for crypto

Syntax:

* Domain D

e Range R

* FunctionF: D 2 R

No correctness properties other than deterministic



Security?

/Definition: F is (t,€)-One-Way if, for all %»running A
in time at most t, ’

Prix<§ (F(x)),x€D] < ¢
- /

Trivial example:
F(x) = parity of x
Given F(x), impossible to predict X



Security

/Definition: F is (t,€)-One-Way if, for all %running A
in time at most t, ’

PrF(x)=F(y):y €} (F(x)),x€D] < €

\




Examples

Any PRG

Any Collision Resistant Hash Function (with sufficient
compression)

F(p.q) = pq
F(g.a) = (9.9%)
F(N,x) = (N,x3 mod N)or F(N,x) = (N,x2 mod N)



What’s Known




Plus arrows from everything
to one-way functions




Our Goal: Fill in Remaining Arrows



Hardcore Bits

Let F be a one-way function with domain D, range R

" Definition: A function h:D>{0,1} is a (t,€)- A

hardcore bit for F if, for any & running in time at
most t, g
| Prl1€ 7 (F(x), h(x)), x<D]
= Prl1€7(F(x), b), x€D,b<{0,1}] | < €

In other words, even given F(x), hard to guess h(x)



Examples of Hardcore Bits

Define Isb(X) as the least significant bit of X

For x € Z,,, define Half(x) as 1 iff 0¢x<N/2



" Theorem: Let p be a prime, and F:Z,>Z, beF(x) = A

g* mod p, for some generator g

_Half is a hardcore bit for F (assume F is one-way)

/Theorem: Let N be a product of two large primes p,q,

and F:Z,,">Z," be F(x) = x¢ mod N for some e
relatively prime to (p-1)(q-1)

)
~

kLSb and Half are hardcore bits for F (assuming RSA)

(Theorem: Let N be a product of two large primes p,q,
and F:Z,, >Z," be F(x) = x2 mod N

/
\

Lsb and Half are hardcore bits for F (assuming
Q‘actormg) y




Goldreich Levin Hardcore Bit

Let F be a OWF with domain {0,1}" and range R

Let F’:§0,1}2" = {0,1}"xR be:
F'(r,x) = r,F(x)

Define h(r,x) = <r,x> = 2r;x; mod 2

Theorem (Goldreich-Levin): If F is (+,€)-one-way,
then his a ( poly(t,1/€), poly(g) )-hc bit for F’




Application: PRGs

Suppose F was a permutation (D=R and F is one-to-
one)

Let F’, h be from Goldreich-Levin

X—-»F—»

w

q




Hardcore Bits

A hc bit for any OWF

Implies PRG from any one-way permutation
* PRG from Dlog (Blum-Micali)
* PRG from RSA

* PRG from Factoring

Actually, can construct PRG from any OWF
* Proof beyond scope of course



Plus arrows from everything
to one-way functions



Reminders

HW5 due next week

Keep working on project



