COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2018

Number Theory

 $\mathbb{Z}_{\mathbf{N}}$: integers mod \mathbf{N}

 \mathbb{Z}_{N}^{*} : integers mod **N** that are relatively prime to **N**

- $x \in \mathbb{Z}_N^*$ iff x has an "inverse" y s.t. xy mod N = 1
- For prime N, $\mathbb{Z}_{N}^{*} = \{1, ..., N-1\}$

$$\Phi(N) = |\mathbb{Z}_N^*|$$

Euler's theorem: for any $x \in \mathbb{Z}_N^*$, $x^{\Phi(N)}$ mod N = 1

Groups

A group is a set **G** together with a binary operation ⊗

- g⊗h∈G
- \exists identity 1 s.t. $g \otimes 1 = 1 \otimes g = g$
- $f \otimes (g \otimes h) = (f \otimes g) \otimes h$ (Associativity)
- For all g, $\exists g^{-1}$ s.t. $g \otimes g^{-1} = g^{-1} \otimes g = 1$

In this class, we will always work with finite commutative groups

- |G|<∞
- g⊗h=h⊗g

Examples of Groups

Additive group $\mathbb{Z}_{\mathbf{N}}$

• $g \otimes h = g + h \mod N$

Multiplicative group \mathbb{Z}_{N}^{*}

• $g \otimes h = g \times h \mod N$

Cyclic Groups

A group **G** of size **N** is cyclic if: \exists **g s.t. G** = {1,g,g², ..., g^{N-1}} (we call such a **g** a generator)

Examples:

- Additive group \mathbb{Z}_{N} (generator?)
- Multiplicative group $\mathbb{Z}_{\mathbf{p}}^{*}$ for prime \mathbf{p}

Non-example: \mathbb{Z}_{15}^*

DLog:

• Given (g,ga), compute a

CDH:

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

G cyclic, order **q**

(G,t,ε)-Discrete Log:

For any algorithm vrunning in time at most **†**,

 $Pr[g^a \leftarrow \mathcal{V}(g,g^a): g \leftarrow G, a \leftarrow \mathbb{Z}_q] \leq \varepsilon$

(G,t,ε)-Computational Diffie Hellman:

For any algorithm running in time at most **†**,

 $Pr[g^{ab} \leftarrow \mathcal{V}(g,g^a,g^b): g \leftarrow G, a,b \leftarrow \mathbb{Z}_q] \leq \varepsilon$

(G, t,ε)-Decisional Diffie Hellman:

For any algorithm frunning in time at most t,

| $Pr[1 \leftarrow (g,g^a,g^b,g^{ab}): g \leftarrow G, a,b \leftarrow \mathbb{Z}_q]$ - $Pr[1 \leftarrow (g,g^a,g^b,g^c): g \leftarrow G, a,b,c \leftarrow \mathbb{Z}_q] \mid \leq \epsilon$

Hardness of DLog

Over $\mathbb{Z}_{\mathbf{p}}^*$:

- Brute force: O(p)
- Better algs based on birthday paradox: O(p^{1/2})
- Even better heuristic algorithms:

$$\exp(C(\log p)^{1/3}(\log \log p)^{2/3})$$

• Therefore, plausible assumption:

$$(\mathbb{Z}_{p}^{*},t=2^{(\log p)^{1/3}},\epsilon=2^{-(\log p)^{1/3}})$$

Naor-Reingold PRF

Domain: **{0,1}**ⁿ

Key space: \mathbb{Z}_{q}^{n+1}

Range: **G**

$$F((a,b_1,b_2,...,b_n), x) = g^{ab_1^{x_1}b_2^{x_2}}...b_n^{x_n}$$

Theorem: If (G, t,ε)-DDH holds, then the Naor-

Reingold PRF is (t-t', r, 2rne)-secure

Proof by Hybrids

Hybrids 0:
$$H(x) = g^{a b_1^{x1} b_2^{x2}} ... b_n^{xn}$$

Hybrid i:
$$H(x) = H_i(x_{[1,i]})^{b_{i+1}^{x_{i+1}}} \dots b_n^{x_n}$$

• H_i is a random function from $\{0,1\}^i \rightarrow G$

Hybrid \mathbf{n} : $\mathbf{H}(\mathbf{x})$ is truly random

Proof

Suppose adversary can distinguish Hybrid **i-1** from Hybrid **i** for some **i**

Easy to construct adversary that distinguishes:

$$x \rightarrow H_i(x)$$
 from $x \rightarrow H_{i-1}(x_{[1,i-1]})^{b^{x_i}}$
with advantage $2r\epsilon$

Proof

Suppose adversary makes **2r** queries

Assume wlog that queries are in pairs x||0, x||1

What does the adversary see?

- H_i(x): 2r random elements in G
- $H_{i-1}(x_{[1,i-1]})^{b_i^{x_i}}$: r random elements in G, $h_1,...,h_r$ as well as h_1^b , ..., h_r^b

Lemma: Assuming (G, \dagger, ϵ) -DDH the following distributions are indistinguishable except with advantage $s\epsilon$:

$$(g,g^{x1},g^{y1},...,g^{xs},g^{ys})$$
 and $(g,g^{x1},g^{b},x^{1},...,g^{xs},g^{b},x^{s})$

Suffices to finish proof of NR-PRF

Proof of Lemma

Hybrids O: $(g,g^{x1},g^{b})^{x1}$, ..., g^{xs},g^{b}

Hybrid **i**:
$$(g,g^{x1},g^{y1},...,g^{xi},g^{yi},g^{xi+1},g^{b})$$

Hybrid **s**: **(g,g^{x1},g^{y1},...,g^{xs},g^{ys})**

Proof of Lemma

Suppose adversary distinguishes Hybrid **i-1** from Hybrid **i**

Use adversary to break DDH:

Proof of Lemma

$$(g,g^{x_1},g^{y_1},...,g^{x_{i-1}},g^{y_{i-1}},u,v, g^{x_{i+1}},h^{x_{i+1}}, ...g^{x_s},h^{x_s})$$
If $(g,h,u,v) = (g,g^b,g^{x_i},g^{b},v^i)$, then Hybrid $i-1$
If $(g,h,u,v) = (g,g^b,g^{x_i},g^{y_i})$, then Hybrid i

Therefore, ** s advantage is the same as **(s

Further Applications

From NR-PRF can construct:

- CPA-secure encryption
- Block Ciphers
- MACs
- Authenticated Encryption

Parameter Size in Practice?

- **G** = subgroup of \mathbb{Z}_p^* of order **q**, where **q**| **p-1**
- In practice, best algorithms require **p** ≥ 2¹⁰²⁴ or so

- **G** = "elliptic curve groups"
- Can set **p** ≈ 2²⁵⁶ to have security
 - \Rightarrow best attacks run in time 2¹²⁸

Therefore, elliptic curve groups tend to be much more efficient \Rightarrow shift to using in practice

Integer Factorization

Integer Factorization

Given an integer N, find it's prime factors

Studied for centuries, presumed difficult

- Grade school algorithm: O(N^{1/2})
- Better algorithms using birthday paradox: O(N^{1/4})
- Even better assuming G. Riemann Hyp.: O(N^{1/4})
- Still better heuristic algorithms:

$$\exp(C(\log N)^{1/3}(\log \log N)^{2/3})$$

 However, all require super-polynomial time in bitlength of N (λ,t,ϵ) -Factoring Assumption: For any factoring algorithm \mathcal{L} running in time at most \mathbf{t} ,

Pr[(p,q)← $\[\]$ (N):
N=pq and p,q random λ-bit primes]≤ε

Plausible assumption: $(\lambda, t=2^{\lambda^{1/3}}, \epsilon=2^{-\lambda^{1/3}})$

Sampling Random Primes

Prime Number Theorem: A random λ -bit number is prime with probability $\approx 1/\lambda$

Primality Testing: It is possible in polynomial time to decide if an integer is prime

Fermat Primality Test (randomized, some false positives):

- Choose a random integer a ∈ {0,...,N-1}
- Test if a^N = a mod N
- Repeat many times

Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let
$$\mathbf{x} \in \mathbb{Z}_{p'}$$
 $\mathbf{y} \in \mathbb{Z}_{q}$

Then there exists a unique integer $\mathbf{z} \in \mathbb{Z}_{N}$ such that

- $\cdot x = z \mod p$, and
- \cdot y = z mod q

Proof: $z = [py(p^{-1} \mod q) + qx(q^{-1} \mod p)] \mod N$

Quadratic Residues

Definition: y is a quadratic residue mod N if there exists an x such that $y = x^2 \mod N$. x is called a "square root" of y

Ex:

- Let **p** be a prime, and **y**≠**0** a quadratic residue mod
 p. How many square roots of **y**?
- Let N=pq be the product of two primes, y a quadratic residue mod N. Suppose y≠0 mod p and y≠0 mod q. How many square roots?

 (λ,t,ε) -QR Assumption: For any factoring algorithm running in time at most \dagger ,

Pr[$y^2=x^2 \mod N$: $y \leftarrow (N,x^2)$ N=pq and p,q random λ -bit primes $x \leftarrow \mathbb{Z}_N$] $\leq \epsilon$ Theorem: If the (λ,t,ϵ) -factoring assumption holds, then the $(\lambda,t-t',2\epsilon)$ -QR assumption holds

Proof

To factor **N**:

- x←Z_N
 y← (N,x²)
 Output GCD(x-y,N)

Analysis:

- Let {a,b,c,d} be the 4 square roots of x²
- has no idea which one you chose
- With probability ½, y will not be in {+x,-x}
- In this case, we know x=y mod p but x=-y mod q

Collision Resistance from Factoring

Let **N=pq**, **y** a QR mod **N** Suppose **-1** is not a **QR** mod **N**

Hashing key: (N,y)

```
Domain: \{1,...,(N-1)/2\} \times \{0,1\}
Range: \{1,...,(N-1)/2\}
H( (N,y), (x,b) ): Let z = y^b x^2 \mod N
• If z \in \{1,...,(N-1)/2\}, output z
• Else, output -z \mod N \in \{1,...,(N-1)/2\}
```

Theorem: If the (λ,t,ε) -factoring assumption holds, H is $(t-t',2\varepsilon)$ -collision resistant

Proof:

- Collision means $(x_0,b_0)\neq(x_1,b_1)$ s.t. $y^{b0} x_0^2 = \pm y^{b1} x_1^2 \mod N$
- If $b_0=b_1$, then $x_0\neq x_1$, but $x_0^2=\pm x_1^2 \mod N$
 - $x_0^2 = -x_1^2 \mod N$ not possible. Why?
 - $x_0 \neq -x_1$ since $x_0, x_1 \in \{1, ..., (N-1)/2\}$
- If $b_0 \neq b_1$, then $(x_0/x_1)^2 = \pm y^{\pm 1} \mod N$
 - -y case not possible. Why?
 - (x_0/x_1) or (x_1/x_0) is a square root of y

Choosing N

How to choose **N** so that **-1** is not a QR?

By CRT, need to choose **p,q** such that -1 is not a QR mod **p** or mod **q**

Fact: if $p = 3 \mod 4$, then -1 is not a QR mod p

Fact: if $p = 1 \mod 4$, then -1 is a QR mod p

Is Composite N Necessary for SQ to be hard?

Let p be a prime, and suppose $p = 3 \mod 4$

Given a QR x mod p, how to compute square root?

Hint: recall Fermat: $x^{p-1}=1 \mod p$ for all $x\neq 0$

Hint: what is $\mathbf{x}^{(p+1)/2}$ mod \mathbf{p} ?

Solving Quadratic Equations

In general, solving quadratic equations is:

- Easy over prime moduli
- As hard as factoring over composite moduli

Other Powers?

What about $x \rightarrow x^4 \mod N$? $x \rightarrow x^6 \mod N$?

The function $x \rightarrow x^3 \mod N$ appears quite different

- Suppose 3 is relatively prime to p-1 and q-1
- Then $x \rightarrow x^3 \mod p$ is injective for $x \neq 0$
 - Let a be such that 3a = 1 mod p-1
 - $(x^3)^a = x^{1+k(p-1)} = x(x^{p-1})^k = x \mod p$
- By CRT, $x \rightarrow x^3 \mod N$ is injective for $x \in \mathbb{Z}_N^*$

x³ mod N

What does injectivity mean?

Cannot base of factoring:

Adapt alg for square roots:

- Choose a random z mod N
- Compute $y = z^3 \mod N$
- Run inverter on y to get a cube root x
- Let p = GCD(z-x, N), q = N/p

RSA Problem

Given

- $\cdot N = pq$
- e such that GCD(e,p-1)=GCD(e,q-1)=1,
- y=x^e mod N for a random x

Find x

Injectivity means cannot base hardness on factoring, but still conjectured to be hard

(e,t, ε)-RSA Assumption: For any factoring algorithm $\frac{1}{k}$ running in time at most $\frac{1}{k}$,

Pr[x
$$\leftarrow$$
 (N,x³ mod N)
N=pq and p,q random λ -bit primes s.t.
GCD(3,p-1)=GCD(3,q-1)=1
x \leftarrow \mathbb{Z}_N^*] $\leq \epsilon$

Application: PRGs

Let $F(x) = x^3 \mod N$, h(x) = least significant bit

Theorem: If (e,t,ε) -RSA Assumption holds, then G(x) = (F(x), h(x)) is a $(t-t',\varepsilon')$ -secure PRG

Crypto from Minimal Assumptions

Many ways to build crypto

We've seen many ways to build crypto

- SPN networks
- LFSR's
- Discrete Log
- Factoring

Questions:

- Can common techniques be abstracted out as theorem statements?
- Can every technique be used to build every application?

One-way Functions

The minimal assumption for crypto

Syntax:

- Domain D
- Range R
- Function **F**: **D** → **R**

No correctness properties other than deterministic

Security?

Definition: \mathbf{F} is $(\mathbf{t}, \boldsymbol{\varepsilon})$ -One-Way if, for all \mathbf{f} running in time at most \mathbf{t} ,

$$Pr[x\leftarrow F(x)),x\leftarrow D] < \varepsilon$$

Trivial example:

F(x) = parity of xGiven F(x), impossible to predict x

Security

Definition: \mathbf{F} is $(\mathbf{t}, \boldsymbol{\varepsilon})$ -One-Way if, for all \mathbf{f} running in time at most \mathbf{t} ,

$$Pr[F(x)=F(y):y\leftarrow (F(x)),x\leftarrow D] < \varepsilon$$

Examples

Any PRG

Any Collision Resistant Hash Function (with sufficient compression)

$$F(p,q) = pq$$

$$F(g,a) = (g,g^a)$$

$$F(N,x) = (N,x^3 \mod N) \text{ or } F(N,x) = (N,x^2 \mod N)$$

What's Known

So Far

Our Goal: Fill in Remaining Arrows

Hardcore Bits

Let **F** be a one-way function with domain **D**, range **R**

```
Definition: A function h:D \rightarrow \{0,1\} is a (t,\epsilon)-
hardcore bit for F if, for any running in time at
most t,
|Pr[1\leftarrow (F(x), h(x)), x\leftarrow D]
-Pr[1\leftarrow (F(x), b), x\leftarrow D,b\leftarrow \{0,1\}]| \leq \epsilon
```

In other words, even given F(x), hard to guess h(x)

Examples of Hardcore Bits

Define **lsb(x)** as the least significant bit of **x**

For $x \in Z_N$, define Half(x) as 1 iff $0 \le x < N/2$

Theorem: Let **p** be a prime, and $F: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ be $F(x) = g^x \mod p$, for some generator **g**

Half is a hardcore bit for F (assume F is one-way)

Theorem: Let \mathbb{N} be a product of two large primes \mathbf{p}, \mathbf{q} , and $\mathbf{F}: \mathbf{Z_N}^* \to \mathbf{Z_N}^*$ be $\mathbf{F}(\mathbf{x}) = \mathbf{x}^e \mod \mathbb{N}$ for some \mathbf{e} relatively prime to $(\mathbf{p}-1)(\mathbf{q}-1)$

Lsb and Half are hardcore bits for F (assuming RSA)

Theorem: Let N be a product of two large primes p,q, and $F:Z_N^* \to Z_N^*$ be $F(x) = x^2 \mod N$

Lsb and Half are hardcore bits for **F** (assuming factoring)

Goldreich Levin Hardcore Bit

Let **F** be a OWF with domain **{0,1}ⁿ** and range **R**

Let
$$F':\{0,1\}^{2n} \to \{0,1\}^n \times R$$
 be:
 $F'(r,x) = r,F(x)$

Define $h(r,x) = \langle r,x \rangle = \sum_i r_i x_i \mod 2$

Theorem (Goldreich-Levin): If F is (t,ϵ) -one-way, then h is a $(poly(t,1/\epsilon), poly(\epsilon))$ -hc bit for F'

Application: PRGs

Suppose **F** was a permutation (**D=R** and **F** is one-to-one)

Let **F'**, **h** be from Goldreich-Levin

Hardcore Bits

A hc bit for any OWF

Implies PRG from any one-way permutation

- PRG from Dlog (Blum-Micali)
- PRG from RSA
- PRG from Factoring

Actually, can construct PRG from any OWF

Proof beyond scope of course

So Far

Reminders

HW5 due next week

Keep working on project