COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2018

(Non-interactive)
Commitment Syntax

Message space M
Ciphertext Space C
(suppressing security parameter)

Com(m; r): outputs a commitment ¢ to m

Commitments with Setup

Message space M
Ciphertext Space C

Setup(): Outputs a key k
Com(k, m; r): outputs a commitment ¢ tom

Using Commitments

r<R
c<Com(m;r)

.M
m,r

Reveal Stage Commit Stage

> Check that
¢ = Com(m;r)

Using Commitments (with setup)

k<€ Setup()
)
o / \
N
£ ré€R c<Com(k,m;r)
. i
(%0 Tm K"
Z m,r
© —Check that
2 ¢ = Com(k,m;r)
oc

Security Properties (with Setup)

Hiding: ¢ should hide m
* Perfect hiding: for any m,, m;,

k,Com(k,m,) £ k,Com(k,m,)

* Statistical hiding: for any mg, m;
a([k,.Com(k,m,)], [k,Com(K,m,)]) < negl

* Computational hiding:

W < ,
m Mg, M —) ¢ € Com(k,m,)

; <
bl

Security Properties (with Setup)

Binding: Impossible to change committed value
* Perfect binding: For any K,¢, 3 at most a single m
such that ¢ = Com(k,m;r) for some r

e Statistical binding: except with negligible prob over
Kk, for any ¢, 3 at most a single m such that ¢ =
Com(k,m;r) for somer

 Computational binding: no efficient adversary,
given k€ Setup(), can find (my,r,),(m,,r,) such
that Com(k,m,;r,)=Com(k,m,;r,)
My # M,

A Simple Commitment Scheme

Let H be a hash function

Com(m;r) = H(m |l r)

Binding?

Hiding?

Statistically Hiding Commitments?

Let B be a collision resistant hash function with
domain X={0,1}xR and range Z

Setup(): K€K, output K
Com(k, m; r) = H(k, (m,r))

Binding?

Hiding?

Statistically Hiding Commitments

Let F be a pairwise independent function family with
domain X={0,1}xR and range Y

Let H be a collision resistant hash function with
domain Y and range Z

Setup(): fF&F, k<K, output (f,k)
Com((F,k), m, r) = H(kl F(mlr))

‘Theorem: If H is (t,€)-collision resistant, then
(Setup,Com) is (+-1', e+|XI2/1YI)-
_computationally binding

Proof:
e Suppose Y] = IX|2 x y
* For any Xq#X,, Prlf(x,)=Ff(x,)] < 1/(IX|2 x y)
* Union bound:
Pri3 x,#x, s.t. f(x,)=F(x,)] < 1/y
* Therefore, f is injective = any collision for Com
must be a collision for H

Theorem: If | X| is “sufficiently large”, then
(Setup,Com) has statistical hiding

Goal: show (f, k, H(k, f(O,r))) is statistically close
to (F, Kk, H(k, f(1,r)))

Min-entropy

/Definition: Given a distribution D over a set X, the h
min-entropy of D, denoted H_(D), is
\ - max, log,(Pr[x<D]))

Examples:

* Ho({0,1}") = n

« H_(random n bit string with parity 0)
* H_(random i»>0 where Pr[i] = 2-)

Leftover Hash Lemma

‘Lemma: Let D be a distribution on X, and F a family

of pairwise independent functions from Xto Y. Then
A((F, f(D)) , (f, R)) ¢ € where

 f&F

« RECY

* log IY] ¢ H,(D) + 2 log ¢

(&

Intuitively, f(D) looks random, provided the min-
entropy of D is large enough

“Crooked” Leftover Hash Lemma

/Lemma: Let D be a distribution on X, and F a family A

of pairwise independent functions from Xto Y, and
h be any function fromY to Z. Then

A((f, h(f(D))) , (f, h(R))) < £ where

. FEF
c RCY
* log |zl < H,(D) + 2 log € - 1
N Y,

Makes sense even for £ with large output

Theorem: If we set |R|=|Z|3, then (Setup,Com) is
(4/1Z])-statistically hiding

Goal: show (f, k, H(k, f(O,r))) is statistically close
to (F, kK, H(k, f(1,r)))

Let D=(0,r), min-entropy log IR
SetR =|ZI3, € = 2/]Z]

Then log |Z| ¢ H(D) + 2 log € - 1

Theorem: If we set |R|=|Z|3, then (Setup,Com) is
(4/1Z])-statistically hiding

For any K,
A((F, H(k, f(O,r)) , (F, H(k, U))) < ¢

Thus
A((F, H(k, f(O,r))) , (f, H(k, f(1,1))) ¢ 2¢

Therefore

A((F, k, H(k, f(O,r))), (F, k, H(k, f(1,r))) < 2¢

Statistically Binding Commitments

Let G be a PRG with domain §0,1}, range §0,1}3*
Setup(): choose and output a random 3A-bit string K

Com(b; r): If b=0, output G(r), if b=1, output G(r)ek

[Theorem: (Setup,Com) is (2-*)-statistically binding]

Theorem: If G is a (t,€)-secure PRG, then
(Setup,Com) is (t-1',2¢)-computationally hiding

Theorem: If G is a (t,€)-secure PRG, then
(Setup,Com) is (t-1',2¢)-computationally hiding

Hybrids:

* Hyb 0: ¢ = Com(0;r) = G(r) where r<40,1}*

* Hyb 1: c€4{0,1}3*

* Hyb 2: ¢ = S’ek, where S’ €4{0,1}3*

* Hyb 3: ¢ = Com(1;r) = G(r)ek where r<&40,1}2

{Theorem: (Setup,Com) is (2-*)-statistically binding

Proof:
For any r,r’, Pr[G(r) = G(r')ek] = 2-3*

By union bound:
Pr[3rr’ such that Com(k,0)=Com(k,1)]
= Pr[3rr’ suchthat G(r) = G(r')ek] < 2-

More Problems with Anagrams

Huygens Discovers Saturn’s moon Titan

* Sends the following to Wallis

ADMOVERE OCULIS DISTANTIA SIDERA NOSTRIS,
UUUUUUUCCCRR-HNBQX

(First part meaning “to direct our eyes to distant stars”)

Plaintext: saturno luna sua circunducitur
diebus sexdecim horis quatuor
(“Saturn’s moon is led around it in sixteen days and four hours”)

More Problems with Anagrams

Huygens Discovers Saturn’s moon Titan

* Wallis replies with

AAAAAAAAA B CCCCC DDDD EEEEEEEEE F H
ITITTITIITTITIT LLL MMMMMM NNNNNN OOOOOOO PPPPP
Q RRRRRRRRRRR SSSSSSSSSSSSS TTTTTTTT
Uuuuuuuuuuuuuuuuy X

(Contains all of the letters in Huygens’ message, plus some)

More Problems with Anagrams

Huygens Discovers Saturn’s moon Titan
* When Huygens finally reveals his discovery, Wallis

responds by giving solution to his anagram:

saturni comes quasi lunando vehitur. diebus
sexdecim circuitu rotatur. novas nuper
saturni formas telescopo vidimus primitus.
plura speramus

(“A companion of Saturn is carried in a curve. It is turned by a
revolution in sixteen days. We have recently observed new shapes
of Saturn with a telescope. We expect more.”)

* Tricked Huygens into thinking British astronomers
had already discovered Titan

More Problems with Anagrams

Sometimes, hiding and binding are not enough

For some situations (e.g. claiming priority on

discoveries) also want commitments to be “non-

malleable”

* Shouldn’t be able to cause predictable changes to
committed value

Beyond scope of this course

Number Theory and Crypto

So Far...

Two ways to construct cryptographic schemes:

* Use others as building blocks
* PRGs = Stream ciphers
* PRFs > PRPs
* PRFs/PRPs > CPA-secure Encryption

* From scratch
* RC4, DES, AES, etc

In either case, ultimately scheme or some building
block built from scratch

Cryptographic Assumptions

Security of schemes built from scratch relies solely
on our inability to break them

* No security proof

* Perhaps arguments for security

We gain confidence in security over time if we see
that nobody can break scheme

Number-theory Constructions

Goal: base security on hard problems of interest to
mathematicians

* Wider set of people trying to solve problem

* Longer history

Number Theory

Zy: integers mod N
ZN*: integers mod N that are relatively prime to N

« xE Zy" iff X has an “inverse” y s.t. xy mod N = 1
e For prime N, Zy ={1,...,N-1}

®(N) = lZN*l

Euler’s theorem: for any X€ 7y, x®™) mod N = 1

Discrete Log

Discrete Log

Let p be a large number (usually prime)

Given gEZP*, a <1, easy to compute g* mod p
* Time poly(log a, log p)

e How?

However, no known efficient ways to recover
a (mod ®(p)=p-1) from g and g* mod p

Cyclic Groups

For prime p, ZP* is cyclic, meaning

3 g s.f2* = {lg,g% - g2}

(we call such a g a generator)

However, not all g are generators
* If go is a generator, then g=g,? is not:

g0z = g1 = 1,50 {l,g,..} | < (p-1)/2

* How to test for generator?

Prla€ 7 (g,9° mod p):

S a<z,

g<generator of ZP*,

J<e

/(p,i' £)- Dlscrete Log Assumption: For any discrete N
log algorithm 7= running in time at most t,

/

Hardness of DLog

For prime p, best know algorithms:

* Brute force: O(p)
* Better algs based on birthday paradox: O(p*)
* Even better heuristic algorithms:

exp(C (log p)/? (log log p)?/3)

* Therefore, plausible assumption:
(le=2(l°9 P)%'E=2-(log p)ys)

For non-prime p, some cases are easy

Collision Resistance from DLog

Let p be a prime

* Key space = ZPZ

* Domain: Z o-1 8

* Range: Z

* H((gh), (x,y)) = gh”

To generate key, choose random g,h & ZP*
* Require g a generator

Collision Resistance from Discrete Log

H((Q:h): (X1Y)) = gxhy

Theorem: If (p,t,€)-Discrete Log assumption holds,
then H is (+-1',€)-collision resistant

k=(9: h)

a

Collision Resistance from Discrete Log

Proof idea:

* Input to H is equation for a line line(a)=ay+x
* H(line) = g'"el@) (evaluation “in the exponent”)
* A collision is two different lines that intersect at a

* Use equations for two lines to solve for a:

a = -(x,-x0)/(y,-Y,) (mod p-1)

Problem

For p>2, p-1is not a prime, so has some factors

Therefore, (y,-Y,) not necessarily invertible mod p-1

However, possible to show that if this is the case, either:
* (y;-Y,) and (x,-X,) have common factor, so can

remove factor and try again, or
* g is not a generator (which isn’t allowed)

Blum-Micali PRG

Let p be a prime
let g€ 2,*
Let h:G>{0,1} be h(x) = 1 if 0<x<(p-1)/2

Seed space: ZP*

Algorithm:

* Let X, be seed

* Fori=0,...

* Letx;,, = g%i mod p
e Output h(x:)

Theorem: If the discrete log assumption holds on

ZP*, then the Blum-Micali generator is a secure PRG

We will prove this next time

Another PRG

P a prime
Let g be a generator

Seed space: Z;_,°
Range: ZP3

PRG(a,b) = (g%g°,g°°)

Don’t know how to prove security from DLog

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not
enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:
* Given (g,g%,g®), compute g°®

Decisional Diffie-Hellman:

 Distinguish (g,g“,gb,gc) from (g,g°,g*’,g°")

DLog:
» Given (g,g%), compute a

CDH:
« Given (g,g%,g®), compute g°

DDH:
 Distinguish (g,g“,gb,gc) from (g,g“,gb,g‘“’)

Increasing Difficulty
suondwnssy 1238uUo04ls

/(p,i',s)-Computational Diffie Hellman: For any A

algorithm 7« running in time at most t,

pr[gabéq;i& (9.9°.9"):
g<generator of ZP*, a,b€Z,, e
N /

~

(p,f £)-Decisi any algorithm

running in tm

lPri1€ fw& (¢
-Prl1€’ g‘m

Hardness of DDH

Need to be careful about DDH

Turns out that DDH as described is usually easy:

* For prime p>2, ®(p)=p-1 will have small factors

* Can essentially reduce solving DDH to solving DDH
over a small factor

Fixing DDH

Let g, be a generator

Suppose p-1 = gr for prime q, integer r

Let g=g,"

gi mod p = 1, butg? mod p # 1 forany q'<q
* So g has “order” q

Let G = {1,9,9%,...} be group “generated by” g

/(G,i',s)-Decisional Diffie Hellman:
For any algorithm "7 running in time at most t,

&>

| Prll1€ | (g, g°,g°g): g€G, a,b€z]
-Pr[lé (g9,9%9%9°): g€G, ab,céZ] |<€

\

Another PRG

Seed space: Z 2
Range: G3

PRG(a,b) = (g%g°,g*°)

Security almost immediately follows from DDH

Generalizing “Cryptographic
Groups”

Can define Dlog, CDH, DDH over groups other than
integers mod p

In many cases, problems turns out easy
Ex: G = Z,, where g®h = g+h mod q

* What is exponentiation in G?

* What is discrete log in G?

In other groups, conjectured to be hard

Naor-Reingold PRF

Domain: {0,1}n
Key space: Zq"+1
Range: G

XN

F((aiblleI”'lbn)l X) - gd bIXI bzxz o b"

Theorem: If the discrete log assumption holds on G,
then the Naor-Reingold PRF is secure

Proof by Hybrids
Hybrids O: H(x) =g‘1 b*! b*? ... byX"

. Xj Xn
Hybrld i: H(X) - Hi(xll'i])bl-l-l 1+l ... bn

* H. is a random function from {0,1} 2> G

Hybrid n: H(x) is truly random

Proof

Suppose adversary can distinguish Hybrid i-=1 from
Hybrid i for some i

Easy to construct adversary that distinguishes:

X9H|(X) from eri-l(x[l,i-l]) b

Proof

Suppose adversary makes 2r queries
 Assume wlog that queries are in pairs x]|0, x|I1

What does the adversary see?

* H(x): 2r random elements in G

b.xi .
i : r random elements in G, hy,...,h
as well as h®, ..., h®

* Hiy(Xq,i-13) q

~

/I.emma: Assuming the DDH assumption on G, for
any polynomial r, the following distributions are
indistinguishable:

(9.9*%.9",...,g%%,g"9) and

(g'gxl'gb xl' m'gxq’gb xq)
\)

Suffices to finish proof of NR-PRF

Proof of Lemma

Hybrids O: (g'gxl’gb X1 m’gxr'gb xr)

Hybrid i: o
(g’gxl'gyl'.“'gxllgyl’ g"i+1,gb Xi+l, mgxr'gb xr)

Hybrid q: (g,9*,g9"},...,9%,g"")

Proof of Lemma

Suppose adversary distinguishes Hybrid i=1 from
Hybrid i

Use adversary to break DDH:

- (Q:QXI:QVI: ---,Qxi'l:gw‘lcu:v:

| \ g><i+1,h><i+1, ,,,gxr,hxr)

<

Proof of Lemma

(g’gxl,ng'...,QXi'l,gYi-l,u’v’ gxi+l,hxi+1, ...gxr,h’“')
if (g,h,u,v) = (g.gb,g%.g> *i), then Hybrid i-1

If (g,h,u,v) = (g.9°.9%,g"'), then Hybrid i

Therefore, ﬁ%’"’s advantage is the same as ©'s

Further Applications

From NR-PRF can construct:
* CPA-secure encryption

* Block Ciphers

* MACs

* Authenticated Encryption

Parameter Size in Practice?

G = subgroup of Z," of order q, where q| p-1
* In practice, best algorithms require p 2 21924 or so

G = "elliptic curve groups”
* Can set p = 223 to have security
= best attacks run in time 2128

Therefore, elliptic curve groups tend to be much
more efficient = shift to using in practice

Integer Factorization

Integer Factorization

Given an integer N, find it’s prime factors

Studied for centuries, presumed difficult
* Grade school algorithm: O(N/2)
* Better algorithms using birthday paradox: O(N*)
* Even better assuming Riemann Hypothesis: O(N*)
* Still better heuristic algorithms:
exp(C (log N)'/3 (log log N)2/3)
* However, all require super-polynomial time in bit-
length of N

{

A,t,€)-Factoring Assumption: For any factoring

algorithm i running in time at most t,

\l

Pri(p.q)< (N):
N=pq and p,q random A-bit primes]<e

~

)

Plausible assumption: (A, 1'=2"1/3, £=2"‘1/3)

Sampling Random Primes

Prime Number Theorem: A random A-bit number is
prime with probability =1/A

Primality Testing: It is possible in polynomial time to
decide if an integer is prime

Fermat Primality Test (randomized, some false positives):
e Choose arandom integer a<{0,...,N-1}

« TestifaN = a mod N

* Repeat many times

Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let XxE %y, YELg

Then there exists a unique integer Z&€ Zy, such that
* X = Z mod p, and
Yy =2 mod q

Proof: z = [py(p! mod q)+qx(q! mod p)] mod N

Quadratic Residues

T D
Definition: Yy is a quadratic residue mod N if there
exists an X such thaty = x2 mod N. x is called a
“square root” of y

N Y

EX:
* Let p be a prime, and y#£0 a quadratic residue mod
p. How many square roots of y?

* Let N=pq be the product of two primes, y a
quadratic residue mod N. Suppose y#0 mod p
and y#0 mod q. How many square roots?

Collision Resistance from
Factoring

Let N=pq, y a QR mod N
Suppose =1 isnota QR mod N

Hashing key: (N,y)
Domain: {1, ...,(N-1)/2}x{0,1}
Range: {1,...,(N-1)/2}

H((N,y), (x,b)): Letz = y*°x2 mod N
. If z€{],...,(N-1)/2}, output 2
* Else, output -z mod N €{1,...,(N-1)/2}

Theorem: If the factoring assumption holds, H is
collision resistant

Proof:
* Collision means (X,,bo)#(X;,b;) s.t.
y2% Xo% = + y°! X2 mod N

e |f b0=bl' then Xo-f-’Xl, but X02=ixlz lT'lOd N
* Xo2=-X,2 mod N not possible. Why?
¢ XO#-XI since XO,XIE{I,...,(N-I)/Z}
* GCD(x,-%;,N) will give factor

* If bo#b,, then (xo/%,)? = £y*! mod N
* (Xo/%,) or (x,/%,) is a square root of +y
* =y case not possible. Why?

Choosing N

How to choose N so that -1 is not a QR?

By CRT, need to choose p,q such that -1 is not a QR
mod p or mod q

Fact: if p = 3 mod 4, then -1is not a QR mod p
Fact:if p = 1 mod 4, then -1isa QR mod p

s Composite N Necessary for SQ
to be hard?

Let p be a prime, and suppose p = 3 mod 4
Given a QR x mod p, how to compute square root?

Hint: recall Fermat: xP-!=1 mod p for all x#0

Hint: what is x(P*1)/2 mod p?

Solving Quadratic Equations

In general, solving quadratic equations is:

* Easy over prime moduli

* As hard as factoring over composite moduli

Next Time

Powers other than 2 and RSA

Reminders

HW due tomorrow

Another homework will be out tonight

Remember to work on project!

