COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2018

Randomized Encryption

Syntax:

- Key space K (usually {0,1}^λ)
- Message space M (usually {0,1}ⁿ)
- Ciphertext space C (usually {0,1}^m)
- Enc: K×M → C (potentially probabilistic)
- **Dec:** $K \times C \rightarrow M \cup \{\bot\}$ (usually deterministic)

Correctness:

• For all $k \in K$, $m \in M$, Pr[Dec(k, Enc(k,m)) = m] = 1

Left-or-Right Experiment

Message Authentication

Goal: If Eve changed **m**, Bob should reject

q-Time MACs

Unforgeability

Output 1 iff:

- c*∉{c₁,...}
 Dec(k,c*) ≠ ⊥

Definition: An encryption scheme (**Enc,Dec**) is an **authenticated encryption scheme** if it is unforgeable and CPA secure

Pseudorandom Permutations (also known as block ciphers)

Functions that "look like" random permutations

Syntax:

- Key space **K** (usually $\{0,1\}^{\lambda}$)
- Domain=Range= X (usually {0,1}ⁿ)
- Function F: K × X → X
- Function F^{-1} : $K \times X \rightarrow X$

Correctness: $\forall k,x, F^{-1}(k, F(k, x)) = x$

Pseudorandom Permutations

Pseudorandom Permutations

PRF Security Definition

Definition: \mathbf{F} is a $(\mathbf{t}, \mathbf{q}, \boldsymbol{\varepsilon})$ -secure PRP if, for all \mathbf{r} running in time at most \mathbf{t} and making at most \mathbf{q} queries,

Pr[1
$$\leftarrow$$
PRF-Exp₀(\nearrow)]
- Pr[1 \leftarrow PRF-Exp₁(\nearrow)] $\leq \epsilon$

Today: Collision Resistant Hashing

Expanding Message Length for MACs

Suppose we have a MAC (MAC, Ver) that works for small messages (e.g. 256 bits)

How can I build a MAC that works for large messages?

One approach:

- MAC blockwise + extra steps to insure integrity
- Problem: extremely long tags

Hash Functions

Let $h:\{0,1\}^l \rightarrow \{0,1\}^n$ be a function, n << l

$$MAC'(k,m) = MAC(k, h(m))$$

 $Ver'(k,m,\sigma) = Ver(k, h(m), \sigma)$

Correctness is straightforward

Security?

- Pigeonhole principle: $\exists m_0 \neq m_1$ s.t. $h(m_0) = h(m_1)$
- But, hopefully such collisions are hard to find

Collision Resistant Hashing?

Syntax:

- Domain **D** (typically {0,1}\) or {0,1}*)
- Range R (typically {0,1}ⁿ)
- Function **H**: **D** → **R**

Correctness: n << l

Security?

Definition: H is (t,ε) -collision resistant if, for all running in time at most t,

$$Pr[H(x_0) = H(x_1) \land x_0 \neq x_1: (x_0, x_1) \leftarrow (x_0) < \epsilon$$

Problem?

Theory vs Practice

In practice, the existence of an algorithm with a built in collision isn't much of a concern

Collisions are hard to find, after all

However, it presents a problem with our definitions

- So theorists change the definition
- Alternate def. will also be useful later

Collision Resistant Hashing

Syntax:

- Key space **K** (typically $\{0,1\}^{\lambda}$)
- Domain D (typically {0,1}\) or {0,1}*)
- Range R (typically {0,1}ⁿ)
- Function H: K × D → R

Correctness: n << l

Security

```
Definition: H is (t,\varepsilon)-collision resistant if, for all running in time at most t,
```

Pr[H(k,x₀) = H(k,x₁)
$$\wedge$$
 x₀ \neq x₁:
(x₀,x₁) \leftarrow (k),k \leftarrow K] < ϵ

Collision Resistance and MACs

Let h(m) = H(k,m) for a random choice of k

MAC'(
$$k_{MAC}$$
,m) = MAC(k_{MAC} , h(m))
Ver'(k_{MAC} ,m, σ) = Ver(k_{MAC} , h(m), σ)

Think of **k** as part of key for **MAC**

Theorem: If (MAC,Ver) is (t,q,ϵ_0) -CMA-secure and H is (t,ϵ_1) -collision resistant, then (MAC',Ver') is $(t-t', q, \epsilon_0+\epsilon_1)$ -CMA secure

Hybrid 0

Output 1 iff:

- m*∉{m₁,...}
- Ver(k, \bar{t}^*, σ^*) where $t^* \leftarrow H(k_H, m^*)$

Hybrid 1

Output 1 iff:

- .• **†***∉{†₁,...}
- Ver(k,t^*,σ^*) where $t^* \leftarrow H(k_H,m^*)$

In Hybrid 1, negligible advantage using MAC security

If succeeds in Hybrid 0 but not Hybrid 1, then

- m*∉{m₁,...}
- But, **†***∈{**†**₁,...}

Suppose $t^* = t_i$

Then (m_i, m^*) is a collision for $H(k, \cdot)$

Straightforward to construct collision finder

Constructing Hash Functions

Domain Extension

Goal: given **h** that compresses small inputs, construct **H** that compresses large inputs

Shows that even compressing by a single bit is enough to compress by arbitrarily many bits

Useful in practice: build hash functions for arbitrary inputs from hash functions with fixed input lengths

- Called compression functions
- Easier to design

Merkle-Damgard

Theorem: If an adversary knows a collision for fixed-length Merkle-Damgard, it can also compute a collision for **h**

Collision OR m₁=m'₁

But, if $m_1=m'_1$, then m=m'

Merkle-Damgard

So far, assumed both inputs in collision has to have the same length

As described, cannot prove Merkle-Damgard is secure if inputs are allowed to have different length

What if adversary knows an input x such that
 h(x||IV) = IV?

Need proper padding to enable security proof

• Ex: append message length to end of message

Constructing **h**

Common approach: use block cipher

Davies-Meyer

Constructing **h**

Some other possibilities are insecure

Constructing **h**

Why do we think Davies-Meyer is reasonable?

Cannot prove collision resistance just based on F
being a secure PRP

Instead, can argue security in "ideal cipher" model

 Pretend F, for each key y, is a uniform random permutation We said 128 bit security is usually enough

Why is a block cipher with 128-bit blocks insufficient?

Birthday Attack

If the range of a hash function is \mathbb{R} , a collision can be found in time $T=O(|\mathbb{R}|^{\frac{1}{2}})$

Attack:

- Given key k for H
- For **i=1,..., T**,
 - Choose random $\mathbf{x_i}$ in \mathbf{D}
 - Let †_i←H(k,x_i)
 - Store pair (x_i, t_i)
- Look for collision amongst stored pairs

Birthday Attack

Analysis:

Expected number of collisions

= Number of pairs × Prob each pair is collision

 \approx (T choose 2) \times 1/|R|

By setting $T=O(|R|^{\frac{1}{2}})$, expectend number of collisions found is at least 1

 \Rightarrow likely to find a collision

Birthday Attack

Space?

Possible to reduce memory requirements to O(1)

Sponge Construction

Sponge Construction

Advantages:

- Round function f can be public invertible function (i.e. unkeyed SPN network)
- Easily get different input/output lengths

SHA-1,2,3

SHA-1,2 are hash functions built as follows:

- Build block cipher (SHACAL-1, SHACAL-2)
- Convert into compression function using Davies-Meyer
- Extend to arbitrary lengths using Merkle-Damgard

SHA-3 is based on sponge construction

SHA-1,2,3

SHA-1 (1995) is no longer considered secure

- 160-bit outputs, so collisions in time 280
- 2017: using some improvements over birthday attack, able to find a collision

SHA-2 (2001)

- Longer output lengths (256-bit, 512-bit)
- Few theoretical weaknesses known

SHA-3 (2015)

NIST wanted hash function built on different principles

Basing MACs on Hash Functions

Idea: $MAC(k,m) = H(k \parallel m)$

Thought: if \mathbf{H} is a "good" hash function and \mathbf{k} is random, should be hard to predict $\mathbf{H}(\mathbf{k} \mid \mathbf{l} \mid \mathbf{m})$ without knowing \mathbf{k}

Unfortunately, cannot prove secure based on just collision resistance of **H**

Random Oracle Model

Pretend **H** is a truly random function

Everyone can query **H** on inputs of their choice

- Any protocol using H
- The adversary (since he knows the key)

A query to **H** has a time cost of 1

Intuitively captures adversaries that simple query **H**, but don't take advantage of any structure

MAC in ROM

$$MAC^{H}(k,m) = H(k||m)$$

 $Ver^{H}(k,m,\sigma) = (H(k||m) == \sigma)$

Theorem: H(k | m) is a (t, q, qt/2ⁿ)-CMA-secure MAC in the random oracle model

Meaning

Output 1 iff:

- m*∉{m₁,...}
 Ver^H(k,m*,σ*)=1

Meaning

Output 1 iff:

- m^{*}∉{m₁,...} H(k||m*)==σ*

Proof Idea

Value of **H(k||m*)** independent of adversary's view unless she queries **H** on **k||m***

• Only way to forge better than random guessing is to learn ${\bf k}$

Adversary only sees truly rand and indep **H** values and MACs, unless she queries **H** on **k||m**; for some **i**

• Only way to learn ${\boldsymbol k}$ is to query ${\boldsymbol H}$ on ${\boldsymbol k}||{\boldsymbol m}_{\boldsymbol i}|$

However, this is very unlikely without knowing **k** in the first place

The ROM

A random oracle is a good

• PRF: F(k,x) = H(k||x)

- PRG (assuming H is expanding):
 - Given a random x, H(x) is pseudorandom since adv is unlikely to query H on x
- CRHF:
 - Given poly-many queries, unlikely for find two that map to same output

The ROM

The ROM is very different from security properties like collision resistant

What does it mean that "Sha-1 behaves like a random oracle"?

No satisfactory definition

Therefore, a ROM proof is a heuristic argument for security

 If insecure, adversary must be taking advantage of structural weaknesses in H

When the ROM Fails

$$MAC^{H}(k,m) = H(k||m)$$

 $Ver^{H}(k,m,\sigma) = (H(k||m) == \sigma)$

Instantiate with Merkle-Damgard (variable length)?

When the ROM Fails

ROM does not apply to regular Merkle-Damgard

Even if h is an ideal hash function

Takeaway: be careful about using ROM for non-"monolithic" hash functions

 Though still possible to pad MD in a way that makes it an ideal hash function if h is ideal

HMAC

HMAC

HMAC

ipad,opad?

- Two different (but related) keys for hash and MAC
- ipad makes hash a "secret key" hash function
- Even if not collision resistant, maybe still impossible to find collisions when hash key is secret
- Turned out to be useful after collisions found in MD5

Reminders

Homework 4 will be out later today – Due April 3

Project 2 will be out by next class – Due April 17

Finding collisions in poorly designed hash functions