COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2018

Randomized Encryption

Syntax:

* Key space K (usually £0,1}")

* Message space M (usually §0,1}")

* Ciphertext space C (usually §0,1}™)

* Enc: KxM > C (potentially probabilistic)

* Dec: KxC > MU{L} (usually deterministic)

Correctness:
* ForallKEK, mEM,
Pr[Dec(k, Enc(k,m)) =m] = 1

Left-or-Right Experiment

1

Challenger

é k € K

j‘f ¢ € Enc(k,m,)

Message Authentication

m

J3 .
A ‘- J ' e
Zi mo \‘, m, f@~
5 \ A\,

Ver(k,m’,c’)

Goal: If Eve changed m, Bob should reject

q-Time MACs

q times
) mEM X kK € K
@ |- -
1 \ (. %) o € MAC(k,m)
m-,0

Output 1 iff:
*EE{mll lm }
 Ver(k,m¥*, *) =1

outputs 1]

qCMA-AdV(=.) = Pr[

= = "2

Unforgeability

K € K,

¢ € Enc(k,m,)

Output 1 iff:
. c*¢{c,,...}
» Dec(k,c*) # L

‘Definition: An encryption scheme (Enc,Dec) is an
authenticated encryption scheme if it is
unforgeable and CPA secure

"

Pseudorandom Permutations

(also known as block ciphers)

Functions that “look like” random permutations

Syntax:

* Key space K (usually {0,1}})

« Domain=Range= X (usually {0,1}")
* FunctionF: K x X =2 X

* Function Fl: K x X > X

Correctness: V K,x, F1(k, F(k, x)) = x

Pseudorandom Permutations

Security: b=0

1

Challenger kK € K

[

Pseudorandom Permutations

Security:

PRF Security Definition

Gefinition: F is a (t,9,€)-secure PRP if, for all ﬁ
running in time at most t+ and making at most q
gueries,

| Pr{1€PRF-Expo(X)]
- pri1eprr-Exp(}) 1] <«

(&

~

/

Today:
Collision Resistant Hashing

Expanding Message Length for MACs

Suppose we have a MAC (MAC,Ver) that works for
small messages (e.g. 256 bits)

How can | build a MAC that works for large
messages?

One approach:
* MAC blockwise + extra steps to insure integrity
* Problem: extremely long tags

Hash Functions

Let h:§0,1}! > {0,1}" be a function, n << |

MAC'(k,m) = MAC(k, h(m))
Ver’(k,m,c) = Ver(k, h(m), o)

Correctness is straightforward
Security?

* Pigeonhole principle: Imyzm, s.t. h(my)=h(m,)
* But, hopefully such collisions are hard to find

Collision Resistant Hashing?

Syntax:

* Domain D (typically {0,1}' or {0,1}*)
* Range R (typically §0,1}")

* FunctionH: D 2 R

Correctness: n << |

Security?

/Definition: H is (t,€)-collision resistant if, for all N
runnin%in time at most t,
PriH(x,) = H(x)) A xo#x;: (X0,%)€ %()] < €

- /

Problem?

Theory vs Practice

In practice, the existence of an algorithm with a built
in collision isn’t much of a concern
 Collisions are hard to find, after all

However, it presents a problem with our definitions
* So theorists change the definition
 Alternate def. will also be useful later

Collision Resistant Hashing

Syntax:

* Key space K (typically §0,1}*)

» Domain D (typically §{0,1} or {0,1}*)
» Range R (typically §{0,1}")

* FunctionH: K x D 2 R

Correctness: n << |

Security

~

/Definition: H is (t,€)-collision resistant if, for all
runnin%in time at most t,

lsr[I-I(k,xo) = H(K,x;) A X #x;:
(XoX,)€ F(K)k€EK] < &

Collision Resistance and MACs

Let h(m) = H(k,m) for a random choice of k

MAC (Kuacsm) = MAC(Kuac, (M)
Ver'(kMAc,m,O') - Vel‘(kMAC, h(m), 0)

Think of kK as part of key for MAC’

-

Theorem: If (MAC,Ver) is (t,q,£,)-CMA-secure and H

s (t,g,)-collision resistant, then (MAC’ Ver’) is

(t-t', q, £o+5,)-CMA secure
\

~

Proof

Hybrid O

Ky € Ky
Kmac € Kuac

t. < H(k,,m,)
GéMAC(kMAC, 1'|)

Output 1 iff:

l- m*¢{m,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

Hybrid 1

Ky € Ky
Kmac € Kuac

t. < H(k,,m,)
GéMAC(kMAC, 1'|)

Output 1 iff:

L t*¢{t,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

In Hybrid 1, negligible advantage using MAC security

Proof

If €. succeeds in Hybrid O but not Hybrid 1, then
« m*¢{m,,...}
* But, t*€{t,,...}

Suppose t* = t,

Then (m;,m*) is a collision for H(k, -)
 Straightforward to construct collision finder

Constructing Hash Functions

Domain Extension

Goal: given h that compresses small inputs, construct
H that compresses large inputs

Shows that even compressing by a single bit is
enough to compress by arbitrarily many bits

Useful in practice: build hash functions for arbitrary
inputs from hash functions with fixed input lengths
 Called compression functions

e Easier to design

Merkle-Damgard

‘Theorem: If an adversary knows a collision for fixed-

length Merkle-Damgard, it can also compute a collision
for h

-

I

I

Collision OR
- me 1'5=1"5)

ts
Collision OR
(m4=m'4 AND

‘|'4=‘|"4)

Collision OR
1.3=""3)

Collision OR
- m, B M, 1'2=1"2)

Proof

1V .|.2

(fixed)

Collision OR
m1=m'1

But, if mlzm'l, then m=m’
IV t,

(fixed)

Merkle-Damgard

So far, assumed both inputs in collision has to have
the same length

As described, cannot prove Merkle-Damgard is
secure if inputs are allowed to have different length
 What if adversary knows an input X such that

h(x|lIV) = IV?

Need proper padding to enable security proof
* Ex: append message length to end of message

Constructing h

Common approach: use block cipher

Davies-Meyer

7
y —b F h(x,y)=xeF(y,x)

Constructing h

Some other possibilities are insecure
X
}
y —t F > h(x,y)=F(y,x)

}
y 1> F —€F—> h(x,y)=F(y,x)ey

Constructing h

SR
y —> F —@®— h(x,y)=xF(y,x)

Why do we think Davies-Meyer is reasonable?

e Cannot prove collision resistance just based on F
being a secure PRP

Instead, can argue security in “ideal cipher” model

* Pretend F, for each key v, is a uniform random
permutation

We said 128 bit security is usually enough

Why is a block cipher with 128-bit blocks
insufficient?

Birthday Attack

If the range of a hash function is R, a collision can be
found in time T=O(IR|*)

Attack:
* Given key K for H
* Fori=l,.., T,
* Choose random X;in D
o Let +,€H(k,x;)
* Store pair (x;, 1)
* Look for collision amongst stored pairs

Birthday Attack

Analysis:

Expected number of collisions

= Number of pairs x Prob each pair is collision
~ (T choose 2) x 1/|R|

By setting T=O(IR|*), expectend number of
collisions found is at least 1

= likely to find a collision

Birthday Attack

Space?

Possible to reduce memory requirements to O(1)

Sponge Construction

Absorbing ' Squeezing

Sponge Construction

Advantages:
* Round function f can be public invertible function
(i.e. unkeyed SPN network)

* Easily get different input/output lengths

SHA-1,2,3

SHA-1,2 are hash functions built as follows:

 Build block cipher (SHACAL-1, SHACAL-2)

e Convert into compression function using Davies-
Meyer

e Extend to arbitrary lengths using Merkle-Damgard

SHA-3 is based on sponge construction

SHA-1,2,3

SHA-1 (1995) is no longer considered secure

* 160-bit outputs, so collisions in time 23°

* 2017: using some improvements over birthday
attack, able to find a collision

SHA-2 (2001)
* Longer output lengths (256-bit, 512-bit)
 Few theoretical weaknesses known

SHA-3 (2015)
 NIST wanted hash function built on different
principles

Basing MACs on Hash Functions

Idea: MAC(K,m) = H(k || m)

Thought: if His a “good” hash function and K is
random, should be hard to predict H(k || m)
without knowing k

Unfortunately, cannot prove secure based on just
collision resistance of H

Random QOracle Model

Pretend H is a truly random function

Everyone can query H on inputs of their choice
e Any protocol using H

* The adversary (since he knows the key)

A query to H has a time cost of 1

Intuitively captures adversaries that simple query H,
but don’t take advantage of any structure

MAC In ROM

MACH(k,m) = H(klIm)
Vert(k,m,c) = (H(kllm) == o)

Theorem: H(k || m) isa(t, q, qt/2")-CMA-secure
MAC in the random oracle model

Meaning
H&Funces

Output 1 iff:
* m*¢{m,,...}
» Vert(k,m*,0%*)=1

Meaning

H<Funcs

Proof Idea

Value of H(kllm*) independent of adversary’s view
unless she queries H on K|lm*

* Only way to forge better than random guessing is to
learn K

Adversary only sees truly rand and indep H values
and MACs, unless she queries H on Kllm; for some i
* Only way to learn k is to query H on Kl|Im,

However, this is very unlikely without knowing K in
the first place

The ROM

A random oracle is a good

 PRF: F(k,x) = H(k||x)

* PRG (assuming H is expanding):
* Given a random X, H(x) is pseudorandom since adv is
unlikely to query H on X

* CRHF:

* Given poly-many queries, unlikely for find two that map
to same output

The ROM

The ROM is very different from security properties
like collision resistant

What does it mean that “Sha-1 behaves like a
random oracle”?
* No satisfactory definition

Therefore, a ROM proof is a heuristic argument for

security

* If insecure, adversary must be taking advantage of
structural weaknesses in H

When the ROM Fails

MACH(k,m) = H(klIm)
Vert(k,m,c) = (H(kllm) == o)

Instantiate with Merkle-Damgard (variable length)?

o Lo Lo Lo L
e e

(fixed)

When the ROM Fails

ROM does not apply to regular Merkle-Damgard
* Even if h is an ideal hash function

Takeaway: be careful about using ROM for non-

“monolithic” hash functions

* Though still possible to pad MD in a way that makes
it an ideal hash function if h is ideal

HMAC

HMAC

ipad,opad?
* Two different (but related) keys for hash and MAC

* ipad makes hash a “secret key” hash function

* Even if not collision resistant, maybe still impossible
to find collisions when hash key is secret

 Turned out to be useful after collisions found in
MD5

Reminders

Homework 4 will be out later today — Due April 3

Project 2 will be out by next class — Due April 17
* Finding collisions in poorly designed hash functions

