COS433/Math 473:
Cryptography

Mark Zhandry
Princeton University
Spring 2018

Limitations of CPA security

attackatdawn
23 .
ZS c . @ _°
5 \ A,

attackatdusk

How?

Message Authentication

m

J3 .
A ‘- J ' e
Zi mo \‘, m, f@~
5 \ A\,

Ver(k,m’,c’)

Goal: If Eve changed m, Bob should reject

Message Authentication Codes

Syntax:

* Key space K

* Message space M

e Tag space T

* MAC(k,m) > o

» Ver(k,m,c) > 0/1

Correctness:

* VYm,k, Ver(k,m, MAC(k,m)) =1

q-Time MACs

q times
) mEM X kK € K
@ |- -
1 \ (. %) o € MAC(k,m)
m-,0

Output 1 iff:
*EE{mll lm }
 Ver(k,m¥*, *) =1

outputs 1]

qCMA-AdV(=.) = Pr[

= = "2

Computational Security

chosen message attack (CMA-secure) if, for all

queries,

CMA-Adv(=) ¢
5 (7)) <«

/ Definition: (MAC,Ver) is (t,q,€)-secure under a N

®_running in time at most t and making at most q

)

Constructing MACs

Use a PRF
F:KxM =2 T

MAC(k,m) = F(k,m)
Ver(k,m,s) = (F(k,m) == o)

‘Theorem: If F is (t,9.,€)-secure then (MAC,Ver) is
(t-1',q,e+1/ITI)-CMA secure

CBC-MAC

=
V=0

k- F

L

kK»>

L

L

k- F

L

k- F

F
L

-

)

MESSAageS
.

‘Theorem: CBC-MAC is a secure PRF for fixed-length \

J

Today

Other Considerations

Authenticated Encryption — combining encryption
with MACs

Timing Attacks on MACs

How do you implement check F(k,m)==0?
String comparison often optimized for performance
Compare(A,B):
* Fori=1,..., A.length
* If A[i] != B[i], abort and return False;

* Return True;

Time depends on number of initial bytes that match

Timing Attacks on MACs

To forge a message m:

For each candidate first byte o,:

* Query server on (m, o) where first byte of ¢ is o,
* See how long it takes to reject

First byte is o, that causes the longest response
* If wrong, server rejects when comparing first byte
* If right, server rejects when comparing second

Timing Attacks on MACs

To forge a message m:

Now we have first byte o,

For each candidate second byte o;:

* Query server on (m, o) where first two bytes of o
are 0,0,

* See how long it takes to reject

Second byte is o, that causes the longest response

Holiwudd Criptoe!

SENDING KEYCODE ..

243581

N

/ ™
Most likely not what was meant

by Hollywood, but conceivable
" %

Thwarting Timing Attacks

Possibility:

* Use a string comparison that is guaranteed to take
constant time

* Unfortunately, this is hard in practice, as optimized
compilers could still try to shortcut the comparison

Possibility:

* Choose random block cipher key k'

« Compare by testing F(k’,A) == F(k’, B)

* Timing of “==“ independent of how many bytes A
and B share

Alternate security notions

Strongly Secure MACs

k € K

c € MAC(k,"\')

lOutput 1 iff:

 (m*o*)¢{(m,,0,),...}
» Ver(k,m*,c*) = 1

outputs 1]

SCMA-Adv(®) = Pr[&

Strongly Secure MACs

Useful when you don’t want to allow the adversary
to change any part of the communication

If there is only a single valid tag for each message
(such as in the PRF-based MAC), then (weak) security
also implies strong security

In general, though, strong security is stronger than
weak security

Adding Verification Queries

k € K
mEM
) G; O; < MAC(k,m,)
_J) /~(m,o)
,!\) b b € Ver(k,m,c)
 (m*c*)

Output 1 iff:
* m*¢{m,,...}
* Ver(k,m*c*) = 1

CMA'-Adv(™.) = Pr[g outputs 1]

‘Theorem: (MAC,Ver) is strongly CMA secure if and \

-

only if it is strongly CMA’ secure

J

Improving efficiency

Limitations of CBC-MAC

Many block cipher evaluations

Sequential

Carter Wegman MAC

k' = (k,h) where:

 k is a PRF key for F:KxR=2>Y

* h is sampled from a pairwise independent function
family

MAC(k’,m):
* Choose a random r€R
* Seto = (r, F(k,r)oh(m))

‘Theorem: If F is (t,9.,€)-secure, then the Carter
Wegman MAC is (t-1',9-1,e+1/|T|+q3/IRI)-
\strongly CMA secure

Efficiency of CW MAC

MAC(K’,m):
* Choose a random r<R
*Seto = (r, F(k,r)eh(m))

h much more efficient that PRFs

PRF applied only to small nonce r
h applied to large message m

PMAC: A Parallel MAC

Authenticated Encryption

Authenticated Encryption

attackatdawn

W J ' (W

¢
| ‘V’?‘ c C ,f'?i
(. @ - Gam
[|

k v

N\ BN

attackatdusk

Goal: Eve cannot learn nor change plaintext
e Authenticated Encryption will satisfy two security
properties

Syntax

Syntax:
*Enc: KxM - C
* Dec: KxC > MU {1}

Correctness:
* ForallKEK, mEM, Dec(k, Enc(k,m)) = m

Unforgeability

K € K,

¢ € Enc(k,m,)

Output 1 iff:
. c*¢{c,,...}
» Dec(k,c*) # L

‘Definition: An encryption scheme (Enc,Dec) is an
authenticated encryption scheme if it is
unforgeable and CPA secure

"

Constructing Authenticated
Encryption

Three possible generic constructions:

1. MAC-then-Encrypt (SSL) NAC(kMAC, m)

________m o
K = (kErIC'kMAC) l ! '
: & EnC(kEnc: (mlc))
. c
¥ Dec(ke,., €)

I

Ver(kyac, M, o)

)

Accept Reject

Constructing Authenticated
Encryption

Three possible generic constructions:

2. Encrypt-then-MAC (IPsec)

. m
K = (Kene:Kmac) ¥ Enc(kg,., M)
_Cc _____ omN-

_/7'
MAC(Kuwac €°)

Constructing Authenticated
Encryption

Three possible generic constructions:

3. Encrypt-and-MAC (SSH)
MAC(Kmac, M)

K = (kEnCIkMAC) ‘Enc(kEnc' "ﬂ‘

+c

Constructing Authenticated
Encryption

1. MAC-then-Encrypt
2. Encrypt-then-MAC

3. Encrypt-and-MAC

Which one(s) always provides authenticated
encryption (assuming strongly secure MAC)?

Constructing Authenticated
Encryption

MAC-then-Encrypt?
* Encryption not guaranteed to provide
authentication
* May be able to modify ciphertext to create a new
ciphertext
« Toy example: Enc(k,m) = (0,Enc’(k,m))
Dec(k, (b,c)) = Dec’(k,c)

X

Constructing Authenticated
Encryption

Encrypt-then-MAC?

* Inner encryption scheme guarantees secrecy,
regardless of what MAC does

* (strongly secure) MAC provides integrity, regardless
of what encryption scheme does

Theorem: Encrypt-then-MAC is an authenticated
encryption scheme for any CPA-secure encryption
\scheme and strongly CMA-secure MAC

v

Constructing Authenticated
Encryption

Encrypt-and-MAC?
* MAC not guaranteed to provide secrecy
* Even though message is encrypted, MAC may

reveal info about message
* Toy example: MAC(k,m) = (m,MAC’(k,m))

X

Constructing Authenticated
Encryption

1. MAC-then-Encrypt X
2. Encrypt-then-MAC v

3. Encrypt-and-MAC X

Which one(s) always provides authenticated
encryption (assuming strongly secure MAC)?

Constructing Authenticated
Encryption
Just because MAC-then-Encrypt and Encrypt-and-

MAC are insecure for some MACs/encryption
schemes, they may be secure in some settings

Ex: MAC-then-Encrypt with CTR or CBC encryption
* For CTR, any one-time MAC is actually sufficient

Theorem: MAC-then-Encrypt with any one-time
MAC and CTR-mode encryption is an authenticated

\encryption scheme

Chosen Ciphertext Attacks

Chosen Ciphertext Attacks

Often, adversary can fool server into decrypting
certain ciphertexts

Even if adversary only learns partial information (e.g.
whether ciphertext decrypted successfully), can use
info to decrypt entire message

Therefore, want security even if adversary can mount
decryption queries

Chosen Plaintext Security

b

1 Kk € K
C C" c ¢ € Enc(k,m)
! Mo, M !
AN c” ‘ ¢ € Enc(k,m,)

1 C" = T € Enc(k,m)
b

CPA-Exp,(™., A)

Chosen Ciphertext Security?

'1’ k € K
m
) c ¢ € Enc(k,m)
C
s (. m m € Dec(k,c)
! m % m %
RN O c*<Enc(k,m,*)
m >
I c

Lunch-time CCA (CCA1)

'1’ k € K
m
) c ¢ € Enc(k,m)
C
s (. m m € Dec(k,c)
" my*, m,* ’ * e
AN) c* c*<Enc(k,m,*)
m

Full CCA (CCA2)

1 k € K
m
) c ¢ € Enc(k,m)
C
) (. m m € Dec(k,c)
! m % m % ’
1 \ O c*<Enc(k,m,*)

Theorem: If (Enc,Dec) is an authenticated
encryption scheme, then it is also CCA secure

Proof Sketch

For any decryption query, two cases

1. Was the result of a CPA query
* In this case, we know the answer already!

2. Was not the result of an encryption query
* In this case, we have a ciphertext forgery

CCA vs Auth Enc

We know Auth Enc implies CCA security

What about the other direction?

For now, always strive for Authenticated Encryption

MAC-then-Encrypt with CBC

Even though MAC-then-Encrypt is secure for CBC
encryption (which we did not prove), still hard to
implement securely

Recall: need padding for CBC
Therefore, two possible sources of error
e Padding error

* MAC error

If possible to tell which, then Bleichenbacher attack

Using Same Key for Encrypt and MAC

Suppose we're combining CBC encryption and CBC-
MAC

Can | use the same key for both?

Attack?

F

F k-

K»>

Using Same Key for Encrypt and MAC

In general, do not use same key for multiple

purposes

* Schemes may interact poorly when using the same
key

However, some modes of operation do allow same
key to be used for both authentication and
encryption

CCM Mode

CCM = Counter Mode with CBC-MAC in
Authenticate-then-Encrypt combination

Possible to show that using same key for
authentication and encryption still provides security

Efficiency

So far, all modes seen require two block cipher
operations per block

* 1 for encryption

* 1 for authentication

|deally, would have only 1 block cipher op per block

OCB (Offset Codebook) Mode

A< Init(N)
A<Inc(A) A<Inc,(A) A<Inc;(A) A<Inc4(A) A<Incg(A)
M 1 M. 2 M 3 M. 4 Checksum
DA DA DA Gea A
Y Y
E, Ex E, E, E,
F inalV
P—Aa H—A O—A DA - Auth
ag
Y Y Y /

OCB Mode

Twice as fast as other block cipher modes of
operation

However, not used much in practice

Other Modes

GCM: Roughly CTR mode then Carter-Wegman MAC

EAX: CTR mode then CMAC (variant of CBC-MAC)

After Spring Break

Hashing and commitment schemes

Public key cryptographic
* How to Alice and Bob exchange K when over the
internet?

Reminder

Homework 3 extension — due Tomorrow

Collision Resistant Hashing

Expanding Message Length for MACs

Suppose | have a MAC (MAC,\Ver) that works for small
messages (e.g. 256 bits)

How can | build a MAC that works for large
messages?

One approach:
* MAC blockwise + extra steps to insure integrity
* Problem: extremely long tags

Hash Functions

Let h:§0,1}" > {0,1}™ be a function, m << n

MAC'(k,m) = MAC(k, h(m))
Ver’(k,m,c) = Ver(k, h(m), o)

Correctness is straightforward
Security?

* Pigeonhole principle: Imyzm, s.t. h(my)=h(m,)
* But, hopefully such collisions are hard to find

Collision Resistant Hashing?

Syntax:

* Domain D (typically {0,1}™ or {0,1}*)
* Range R (typically §0,1}")

* FunctionH: D 2 R

Correctness: n <<€ m

Security?

/Defmltlon (MACVer) is (t,€)-collision resistant |f\
for all % running in time at most t,

PriH(xo) = H(x)) A xo#x,: (X0,%,)€ %()] < E

\l)

Problem?

Theory vs Practice

In practice, the existence of an algorithm with a built
in collision isn’t much of a concern
 Collisions are hard to find, after all

However, it presents a problem with our definitions
* So theorists change the definition
 Alternate def. will also be useful later

Collision Resistant Hashing

Syntax:

* Key space K (typically £0,1})

* Domain D (typically §{0,1}™ or {0,1}*)
» Range R (typically {0,1}")

* FunctionH: K x D 2 R

Correctness: n <<€ m

Security

/Definition: (MACVer) is (t,€)-collision resistant if,\
for all % running in time at most t,

PriH(x,) = HX,) A Xo#X;:
(x0%)€ F(K)K€K] < €

Collision Resistance and MACs

Let h(m) = H(k,m) for a random choice of k

MAC (Kuacsm) = MAC(Kuac, (M)
Ver'(kMAc,m,O') - Vel‘(kMAC, h(m), 0)

Think of kK as part of key for MAC’

Theorem: If (MAC,Ver) is CMA-secure and H is
collision resistant, then so is (MAC’ Ver’)

Proof

Hybrid O

Ky € Ky
Kmac € Kuac

t. < H(k,,m,)
GéMAC(kMAC, 1'|)

Output 1 iff:

l- m*¢{m,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

Hybrid 1

Ky € Ky
Kmac € Kuac

t. < H(k,,m,)
GéMAC(kMAC, 1'|)

Output 1 iff:

L t*¢{t,,...}

 Ver(k,t*,6*) where
t* € H(k,,m*)

Proof

In Hybrid 1, negligible advantage using MAC security

Proof

If €. succeeds in Hybrid O but not Hybrid 1, then
« m*¢{m,,...}

* But, t*€{t,,...}

Suppose t* = t,

Then (m;,m*) is a collision for H

