
COS 433: Cryptography Princeton University
Homework 8 Due: May 8, 2017, 11:59pm

Homework 8

1 Problem 1 (15 points)

Here, you will show that computing discrete logs mod a composite integer N = pq
is as hard as factoring N . In other words, you are given an algorithm A such that
given g, h ∈ Z∗

N , A efficiently computes an integer x such that gx mod N = h. (Note
that in general Z∗

N is not cyclic, so the discrete log is not guaranteed to exist. The
algorithm for discrete logs is only guaranteed to work when the discrete log exists).
Show that given A, you can factor N .

Hint: recall from your previous homeworks information that will allow you to recover
φ(N). See if you can use the discrete log finder to generate such information.

2 Problem 2 (25 points)

Recall the S/key system discussed in class. The secret key is sk, a random input,
and the verification key is vk = y0 := Hn(sk), where Hn denotes iterating the hash
function n times. At the beginning of the ith round of identification, Bob is storing
the value yi−1 := Hn−(i−1)(sk). Alice sends the message yi to Bob. Bob verifies that
H(yi) = yi−1. Then Bob updates his state to yi (note that we are slightly changing
the notation in class, which had the original vk being labeled as yn).

One problem with this scheme is that Alice’s running time is on average O(n) per
identification, since she needs to compute yi from sk. One possibility is to pre-compute
all yi values at the beginning, and store them all. However, this now requires O(n)
space for Alice. Alice can also interpolate between these two by storing only every T th
hash; to compute the next message, she will at maximum need to compute T hashes.
In any of these settings, we have ST ≥ n, where S is the storage requirement, and T
is the number of hashes needed in each identification. Since n bounds the number of
one-time passwords, typically n is quite large (e.g. 230), so this time-memory trade-off
may be undesirable.

Show how Alice can maintain a state consisting of O(log n) values, and only
require a total of O(n log n) hashes for all n identification rounds. This gives
an amortized cost of O(log n) hashes per iteration.

Hint: The problem naturally corresponds to a certain pebbling game. There are
n positions, numbers 1 through n, corresponding to the n messages Alice will send,

1



y1, ..., yn (where yn = sk). Some k positions have pebbles, corresponding to the hashes
stored by Alice. At the beginning of round i, the ith position should have a pebble
on it (so Alice can send yi to Bob). The pebble at i is removed (since Alice can forget
yi afterward). Then, you can make a sequence of pebble moves. Given a pebble at
position j, one possible move is to place a pebble at position j − 1 (corresponding to
computing yj−1 = H(yj)). You can also remove any pebble arbitrarily (by forgetting
a hash); removal does not count as a move, only placing. The restriction is that
the total number of pebbles in play never exceeds k, and you want to minimize the
number of pebbles moves during each round. At the end round i, you should be ready
for the next iteration, meaning you have a pebble at i+ 1.

Suppose n = 2k. Suppose your maximum number of pebbles is k + 1. In round i,
after removing the pebble at i, let j be the lowest pebble above i. You will start from
j, and place pebbles at j−1, j−2, ... until you reach i+1. You may not have enough
pebbles to leave pebbles at each of j − 1, j − 2, ..., so instead, you will remove most
of the pebbles once you’ve placed the next pebble. However, you will strategically
leave some pebbles behind to make your life easier on future iterations. The number
of moves you will need in this round will be j − (i+ 1).

What pebbling strategy ensures that no more than k + 1 pebbles are ever
in play, and that the amortized number of steps is O(n log n)?

As a further hint, it is possible to set things up so that roughly half the rounds will
require no moves, a quarter will require one move, an eighth will require three, a
sixteenth will require seven, etc (so roughly 1/2` fraction will require 2`−1− 1 moves,
for i = 1, ..., k). Summing up all the moves gives the desired O(n log n).

3 Problem 3 (20 points)

Recall that a graph G is 3-colorable if each node of the graph can be painted one
of three colors (say, red, green, and blue, which we will associate with the numbers
1,2,3) such that, for every edge in G, the endpoints of that edge are painted different
colors. Notice that it is easy to verify that a 3-coloring is valid by just checking all
of the edges and making sure the endpoints are different. Therefore, 3-coloring is in
NP, where the witness for G being 3-colorable is just the 3-coloring.

Consider the following simple proof. Choose a random permutation σ on the colors
{1, 2, 3}. Given a coloring C, let σ(C) be the coloring obtained by applying σ to
the color of each node. To prove that a graph is 3-colorable, using a witness C, the
prover simply sends σ(C) to the receiver. The verifier then checks that σ(C) is a valid
3-coloring.

(a) This proof system fails in one of the three required properties for a zero knowl-
edge proof system (completeness, soundness, or zero knowledge). Which one

2



fails?

In order to get around the problem above, instead imagine the following physical
scheme using locked boxes. The prover will start with one lockable box for each node
in G; for each node, she will write down the color of that node in σ(C) and put it in
the corresponding box. The prover will lock all the boxes, keep the keys, but send the
locked boxes to the verifier. Of course, now the verifier has no hope of checking that
σ(C) is a valid 3-coloring. Instead, the verifier chooses a random edge e = (u, v) ∈ G,
and sends e to the prover. The prover then sends the keys for those two nodes back
to the verifier. The verifier opens the two boxes, and checks that the colors inside are
different

(b) Prove that, if G is not 3-colorable, that a malicious prover has a significant
chance of being caught (though it will potentially be < 1). Thus this scheme
has a weak form of soundness.

(c) Prove that the scheme has (malicious verifier) zero knowledge. Assume the
simulator can build its own locked boxes

The soundness of this physical scheme can be boosted by repeating the scheme many
times sequentially, using a new random σ for each iteration. Thus, we can obtain a
physical ZK proof.

(d) What crypto object should we use to implement the locked boxes above, to get
a purely digital scheme? Re-prove soundness and zero knowledge for this new
protocol.

Recall that 3-coloring is an NP complete language. By composing the scheme above
with NP reductions, we can obtain a zero knowledge proof for all of NP

3


	Problem 1 (15 points)
	Problem 2 (25 points)
	Problem 3 (20 points)

