COS 433: Cryptography Princeton University
Homework 7 Due: May 1, 2017, 11:59pm

1
(a)

Homework 7

Problem 1 (10 points)

Let Fy, F be two supposed one-way functions. Say you know that one of Fy, F}
is a secure one-way function, but the other is not. However, you do not know
which one. Construct a new one-way function F' that is secure as long as at
least one of Fjy, ] are secure, but not necessarily both. Prove the one-wayness
of F relying on just the security of Fy or F}

Let (Geng, Fy, Fy '), (Geny, Fi ', FT1) be two supposed trapdoor permutations,
and suppose the domain for both trapdoor permutations is the same set X' (since
they are permutations, the co-domain is also X’). Suppose you are guaranteed
that both are in fact permutations, but one of the two may be insecure. You do
not know which one. Construct a new trapdoor permutation (Gen, F, F~1) that
is secure as long as at least one of (Geng, Fy, Fy '), (Geny, Fy, Fi') is secure, but
not necessarily both.

Let (Geng, Encg, Decy), (Geny, Ency, Dec;) be two public key encryption schemes.
Suppose you are guaranteed that both are correct, in that decrypting an en-
cryption of m recovers m. However, only one of the schemes is CPA-secure,
and you don’t know which. Construct a new encryption scheme (Gen, Enc, Dec)
that is CPA secure, provided at least one of the two schemes is CPA-secure.

Let (Geng, Sign,, Very), (Geny, Sign,, Ver;) be two digital signature schemes. Sup-
pose you are guaranteed that both are correct, in that signatures will verify.
However, only one of the schemes is CMA-secure, and you don’t know which.
Construct a new signature scheme (Gen, Sign, Ver) that is CMA-secure, provided
at least one of the two schemes is CMA-secure.

The constructions you present above are called combiners. With some extra work,
the construction from part (a) can be turned into a universal one-way function: a
one-way function that is secure, provided that some one-way function exists (but
you don’t need to know the one-way function). The same goes for the encryption
combiner. Unfortunately, these universal constructions are of little use in practice.



2 Problem 2 (20 Points)

A random self reduction is a procedure which turns any instance of a problem into a
random instance of the problem.

For example, let p a prime, and G a group of order p. Suppose you are given a discrete
log instance (g, h = ¢g*), and suppose that g # 1 (so that g is a generator). Choose a
random 7, s € Z, such that r # 0 and let ¢’ = ¢" and A’ = h" x g°.

(a) Show that (¢’,h’) is a random discrete log instance with ¢’ # 1 (meaning g is a
random generator, and h is a random group element).

(b) Suppose you give someone (¢, k') and they give you a discrete log b such that
(¢')> = K. Explain how to recover the discrete log of h, namely a.

A random self reduction therefore shows that, if there is any discrete log instance
that is hard, a random discrete log instance is also hard. This means that there are
no “extra hard” instances, since no instance is harder than the average case. The fact
that discrete log admits a random self reduction means we can actually base hardness
of the worst case version of the problem, rather than an average case problem. It can
also be used to amplify the success probability of attacks:

(c) Suppose you have a discrete log adversary A that runs in time ¢, and solves
random discrete log instances with probability €. You know nothing about
A except this fact: in particular, maybe A is deterministic, or maybe A is
randomized.

Show how to use A to derive an adversary A’ which solves discrete log with
probability 99/100, but is allowed to run in time about O(t/e).

Part (c¢) shows that it is actually sufficient to assume that no time-bounded adversary
can solve discrete log with high probability.

(d) Show such a random self reduction for DDH. That is, you are given a tuple
(g,u = g% v = g°,w = ¢g°) where g is a generator, a and b are in Z,, and c is
either ab mod p or different than ab. We will call the ¢ = ab case a DDH tuple.

You must come up with a new tuple (¢, v/, v',w’) such that:
— If (g,u,v,w) is a DDH tuple, then (¢',u/,v",w’) is a random DDH tuple
(it should be random even if (g, u, v, w) is a fixed tuple)

— If (9, u,v,w) is not a DDH tuple, then (¢’,«',v’, w’) is a truly random tuple
of group elements, conditioned on ¢’ being a generator and the tuple being
not a DDH tuple.



The transformation from (g, u, v, w) to (g,u’,v',w’) must be efficient: you can-
not compute discrete logs as part of the transformation.

Note that for part (d), the following simple transformation will not work: (g, u”, v, w").
This is a DDH tuple if (g, u, v, w) was a DDH tuple, and isn’t a DDH tuple if (g, u, v, w)
isn’t. However, for a fixed tuple (g, u, v, w), (g,u",v,w") is not random: for example,
the third component is fixed as v. While this transformation won’t work, it is a useful
starting point to think about.

3 Problem 3 (20 points)

In class, we saw informally how obfuscation can be used to turn a MAC into a
signature scheme. While in general, obfuscation (at least the kind that is sufficiently
strong for crypto) is extremely inefficient. However, sometimes we can design a special
purpose obfuscator that will work for certain constructions.

In this problem, we will consider the following types of programs. Let p be a prime,
and d > 0. We will let P(z) denote a degree-d polynomial defined over Z,. We will

1 if P(z) =
obfuscate programs of the form Tp(x, z) = 1 (z) :.
0 if P(z) # =

(a) One way to obfuscate such programs in the following. Let G be a cyclic group

of order p. Choose a random generator g. The description of the obfuscated
program will consist of (g, g%, ..., g%), where q; is the coefficient of z* in P.

By the discrete log assumption, it is impossible to recover the description of P
from the obfuscated program. Nonetheless, it is still possible to evaluate Tp.
Explain how, given (g, ¢",...,¢%), to evaluate Tp(z, z).

(b) Use the above construction to construct a d-time signature scheme. Each signa-
ture should be a single element in Z,. The public key should be an obfuscated
program as above, namely consisting of d+2 group elements. [Hint: think about
how we created d-time MACs]

(¢) Unfortunately, we do not know how to prove the above construction is d-time
secure under the definition seen in class. However, we will consider a weaker def-
inition. We will consider a non-interactive CMA attack model, where the adver-
sary’s d chosen message queries must be made all at once, and before the adver-
sary sees the public key. That is, the adversary submits d messages my, ..., myq,
and gets as response the public key and the d signatures on mq, ..., my. Finally,
the adversary chooses an m* ¢ {my,...,my} and tries to forge a signature on
m*. We will say that a scheme is (t, d, €) secure if any adversary running in time
at most ¢ has at most a probability e of forging a signature on m*.



Show that if the discrete log assumption holds on G, then your scheme from
part (c) is secure under a non-interactive CMA attack.

For this part, the following fact from Lagrange interpolation will be helpful: Let
P be a degree d polynomial with coefficients ag, ..., aq. For any list of d + 1
inputs o, ..., xq, it is possible to efficiently compute values r; ; € Z,, such that

a; = ;i P(x;).

(d) Explain how to extend the scheme to messages in Zﬁ. The signatures should
still be in Z,

(e) Explain why the scheme is not d + 1-time secure

4 Problem 4 (10 points)

Suppose Alice and Bob each have signed the same message m (with their own secret
keys), obtaining signatures o4, 0p, which they have given to Charlie. Charlie now
wished to prove to Donald that Alice and Bob signed m. Clearly, he can simply give
0a,0p to Donald. However, in some situations, Charlie would like to provide a single
signature o4 g which proves to Donald that both Alice and Bob signed m.

More generally, aggregate signatures allow for the following: if n users 1,...,n have
signed the same message m, producing n signatures oy, ..., 0,, anyone with these n
signatures can construct an aggregate signature oy, that attests to all n users
signing the message m. The size of oy, should be independent of the number of
users.

Show that the signature scheme from Problem 3 can be aggregated very easily. That
is, assume all n users have public/secret keys chosen according to the scheme, all using
the same group G. We will additionally require they all use the same generator g. To
aggregate several signatures on the same message, simply add the signatures together
in Z,.

(a) Explain how, given the public keys for the n users, to verify the aggregate
signature oyy .,y =01+ -+ 0,

(b) Explain why, if user ¢ did not sign m, that it is computationally infeasble to
construct an aggregate signature which verifies



	Problem 1 (10 points)
	Problem 2 (20 Points)
	Problem 3 (20 points)
	Problem 4 (10 points)

