
COS 433: Cryptography Princeton University
Homework 5 Due: April 10, 2018, 11:59pm

Homework 5

Please submit your homeworks through CS Dropbox:
https://dropbox.cs.princeton.edu/COS433_S2018/HW5

1 Problem 1 (10 points)

Let G be a cyclic finite group of prime order p. Consider the following commitment
scheme:

• The message space is Zp.

• Setup(): choose a random g ∈ G, g 6= 1 and a random a ∈ Zp, a 6= 0, and
compute h = ga. The commitment key is g, h.

• Com((g, h),m; r): output gmhr, where r is a random element in Zp.

(a) Show that the scheme is perfectly hiding.

(b) Show that the scheme is computationally binding, assuming the discrete log
problem is hard for G.

2 Problem 2 (20 points)

(a) Show that the original version of the decisional Diffie Hellman problem that we
saw in class is easy. That is, fix a prime p. You are given

(g, ga mod p, gb mod p, h)

where g is a random generator of Z∗
p, a, b← Zp−1, and h is either gab mod p or

gc mod p for a random c ∈ Zp−1.

Show how to tell whether h = gc mod p or h = gab mod p.

(b) Explain why, despite the above attack, the computational Diffie Hellman prob-
lem might still be hard

(c) Generalize the above attack as follows. Suppose G is a cyclic finite group of
order N , and suppose N has a small factor r. Show that the decisional Diffie
Hellman problem can be broken in time proportional to r (and polylogarithmic
in N).

1

https://dropbox.cs.princeton.edu/COS433_S2018/HW5


(d) A number N is t-smooth if all of its prime factors are at most t. Let G be a
cyclic finite group of order N , where N is the product of distinct prime factors
and N is t-smooth for some small t. Show that the discrete log problem is easy
in G: given any g and ga, it is possible efficiently recover a, with a running time
that grows with t, but is otherwise logarithmic in N . The Chinese Remainder
Theorem will be helpful here.

(e) Show that the discrete log problem is easy over Z∗
N for any smooth N . That

is, if N is t-smooth, you should give an algorithm for the discrete log over Z∗
N

whose running time grows with t, but is otherwise logarithmic in N

Note that the N in part (e) is different from the N in part (d). In part (d), N
is the order of the group (the number such that gN = 1), whereas in (e), the
order of the group is something very different.

3 Problem 3 (10 points)

The Euler totient function φ(N) counts the number of elements in Z∗
N , the number

of integers in {0, 1, ..., N − 1} that are relatively prime to N (1 is relatively prime to
N , but 0 is not for N > 1).

(a) Show that for a prime power q = pa, that φ(q) = (p− 1)pa−1 =
(

1− 1
p

)
q

(b) Show that for a positive integer N , φ(N) = N ×
∏

p

(
1− 1

p

)
. Here, p varies

over the prime factors of N , where each p is counted only once. The Chinese
Remainder Theorem will be useful here.

4 Problem 4 (20 points)

Here, we generalized the fact that computing square roots mod a composite is as hard
as factoring.

(a) Let N = pq for unknown primes p, q, and suppose that e is prime and divides
either p − 1 or q − 1, but not both. Show that computing eth roots mod N is
as hard as factoring. That is, if you are able to efficiently compute eth roots,
then you can factor N .

[Hint: if e divides p− 1, then how many roots does an eth residue have mod p?
What if e does not divide p− 1?]

2



(b) Extend the above to handle arbitrary e, as long as e is not relatively prime to
φ(N) = (p − 1)(q − 1). You may assume you know the prime factorization of
e. Note that if e is relatively prime to φ(N), computing eth roots is the RSA
problem, which is not believed to be as hard as factoring.

For part (b), this means the following cases are possible, and must be handled
by your proof:

– e divides both p− 1 and q − 1

– e is composite

– e is does not divide p− 1, but it shares a common factor with p− 1

– e shares common factors with both p − 1 and q − 1 (and maybe not the
same common factor)

3


	Problem 1 (10 points)
	Problem 2 (20 points)
	Problem 3 (10 points)
	Problem 4 (20 points)

