
COS 433: Cryptography Princeton University
Homework 4 Due: April 3, 2018, 11:59pm

Homework 4

Please submit your homeworks through CS Dropbox:
https://dropbox.cs.princeton.edu/COS433_S2018/HW4

1 Problem 1 (10 points)

In this problem, we will explore how to pad messages in order to make Merkle-
Damgard collision resistant, even if the messages are different lengths. Let h :
0, 1512 → 0, 1256 be a compression function. We will apply the following padding:

• First, pad the message to a multiple of 256 bits by appending a string of the
form 100 . . . 00.

• Suppose after the previous step, the message is of length 256 × `. Next, write
down ` as a 256-bit number, and append ` to the message

For example, a string x of length 500 will get padded to x1011025410, where 1011 is
the padding from the first step, and 025410 is the representation of ` = 2 as a 256-bit
number.

The actual hash function H applies the padding above to get a padded string whose
length is a multiple of 256 bits, and then applies the Merkle-Damgard hash function.

(a) Show that any collision for H can be turned into a collision for h, even if the
original collision consisted of messages of different lengths.

(b) What happens if the first step of the padding just padded with 0s instead of
100 . . . 00?

2 Problem 2 (10 points)

One problem with Merkle-Damgard is that it is sequential, and cannot take advantage
of parallelism to speed up the computation.

An alternative hash function is described as follows.

Let h : 0, 1512 → 0, 1256 be a compression function. Define Hi : 0, 1256×2i → 0, 1256 as
follows:

1

https://dropbox.cs.princeton.edu/COS433_S2018/HW4


• H1 = h

• Hi+1 does the following. On input a 256 × 2i+1-bit message x, write x as
x0x1 . . . x2i−1, where each xj is a 512-bit string. Let yj = h(xj) for all j, and let
y = y0y1 . . . y2i−1. Output Hi(y) as the hash.

In other words, Hi is defined by a binary tree containing 2i leaves, which contain the
various 256-bit blocks of x. The value at each node is set to be the hash under h of
the concatenation of its two children. The output is the value of the root.

Given sufficiently many processors, one can compute Hi in about i time steps.

(a) Show how, given a collision for Hi, you can construct a collision for h

(b) The above hash functions only work for messages consisting of an number of
blocks that is a power of 2. Explain how to make the hash function work for
arbitrary length messages. Your hash function should use essentially the same
number of hashes as Merkle-Damgard would use on the same message (it can
be an additive constant more, but shouldn’t be double).

3 Problem 3 (15 points)

Here, we will use the hash functions Hi from problem 2 to solve the following problem.

Suppose you have outsourced the storage of some extremely large database x (which
for our purposes we will think of as an enormous bit-string) to some third party
storage provider (say Amazon or Dropbox). Unfortunately, you do not trust the
provider to maintain your database correctly, so you have kept a hash of the database
to yourself.

When you are accessing some portion of the database (say, a 256-bit block), you
would like the provider to give you some sort of proof that this block was the block
you originally stored. Of course, they could send you the entire database, which
you would hash and compare to the hash you’ve stored. If the hashes are different,
you know something is wrong with the database. This check is of course extremely
expensive, and you don’t want to download the entire database every time you want
to access some small portion of it. You would instead like some way of just checking
that the block you are accessing.

(a) Suppose your database has size 256× 2i, and you stored the hash Hi(x). Now,
you ask the database for block j; show that the provider can send you xj along
with a “proof” that xj is what you originally stored. This proof should have size
O(i) (namely, logarithmic in the overall database size). Prove that if provider

2



sends you a different x′j along with a valid proof for x′j, then the provider can
find a collision for the underlying compression function h. In other words,
the collision-resistance of h guarantees that the provider can only give you the
correct xj.

[Hint: The tree structure discussed in problem 2 will be useful here. Your proof
will contain the values of certain nodes in the tree]

(b) Sometimes you will want to update your database. As with reading the database,
you will typically only update a single 256-bit blocks at any time. You would like
to simultaneously update your hash of the database, but without downloading
the entire database.

Show how the provider can provide you with the new hash instead, along with
a proof that the new hash is correct. Again, your proof should have size O(i).

4 Problem 4 (15 points)

Explain how to efficiently find collisions in the following hash functions:

(a) Ha : {0, 1}512 → {0, 1}256 is defined as follows. Let F, F−1 be a secure block
cipher with block size and key length 256. Ha(x, y) = F (y, x⊕ y)⊕ y That is, y
is interpreted as a key for F , and to compute Ha, we first XOR y with x, apply
the block cipher to the result, and then XOR with y one more time

(b) Hb(x, y) = F (y ⊕ x, x), where F, F−1 is as in part (a)

(c) Hc is a sponge function where the message block size is equal to the internal
state size, so that when we XOR in a block of the message, it affects the entire
state (so in other words, in the lecture slides the blue boxes represent the entire
state and the orange boxes are non-existant). Here, the round function f is an
un-keyed SPN network.

(d) Hd : {0, 1}257 → 0, 1256 is defined as follows. Let H : {0, 1}∗ → {0, 1}256
be a collision-resistant hash function for arbitrary-length messages, and let
Hd(x, b) = H(x) if b = 0 and H(H(x)) if b = 1.

5 Problem 5 (10 points)

Suppose you have a commitment scheme that works for 256-bit messages. Your goal
is to construct a new commitment scheme for arbitrary-length messages. Of course,
a simple approach divide the longer message into 256-bit blocks, and then commit

3



to each block separately. However, you would like to commit to long messages while
only invoking the underlying 256-bit commitment scheme exactly once.

(a) Explain how to do this using a collision resistant hash function with 256-bit
outputs. Prove the security (hiding and binding) of your scheme.

(b) Explain how to do this using a pseudorandom generator with 256-bit seeds.
Prove the security of your scheme

(c) Can you think of any reason to prefer one approach over the other? (assuming
you have very good and efficient hash functions and PRGs)

4


	Problem 1 (10 points)
	Problem 2 (10 points)
	Problem 3 (15 points)
	Problem 4 (15 points)
	Problem 5 (10 points)

