
COS 433: Cryptography Princeton University
Homework 2 Due: February 27, 2018, 11:59pm

Homework 2

Please submit your homeworks through CS Dropbox:
https://dropbox.cs.princeton.edu/COS433_S2018/HW2

1 Problem 1 (15 points)

Suppose (Enc,Dec) is an encryption scheme that has (t, ε)-ciphertext indistinguisha-
bility, with key space K, message space M, and ciphertext space C. Assume M =
{0, 1}n for some integer n.

Which of the following encrpytion algorithms are guaranteed to represent correct
encryption schemes with ciphertext indistinguishability? There are several cases:

• The scheme is guaranteed to be secure, no matter what (Enc,Dec) does, as
long as (Enc,Dec) has (t, ε) ciphertext indistinguishability. In this case, prove
the ciphertext indistinguishability of the derived scheme, as well as the correct
(t′, ε′) values.

• The scheme is always insecure, not matter what (Enc,Dec) does. In this case,
show an attack that works no matter what

• The scheme may be secure for some choices of (Enc,Dec), but insecure for
others. In this case, both (1) give an example of a secure (Enc,Dec) such that
the derived scheme is insecure (and provide an attack), and also (2) provide an
example of a secure (Enc,Dec) that yields a secure scheme, and prove security.
Contrived examples are allowed, and if needed you may use a secure PRG as a
building block for the examples.

• For some schemes, it may be the case that it is not a correct encryption scheme.
In this case explain why. But it also makes sense to talk about the security of
the scheme even if the scheme isn’t correct. Therefore, in this case, also decide
which of the three cases above applies.

You do not need to explain how to decrypt.

(a) Enca(k,m) =
(
Enc(k,m),m[1]

)
. Here, m[1] is the first of m.

(b) Encb(k,m) =
(
Enc(k, r),Enc(r,m)

)
. Here, r is chosen randomly from K, which

is assumed to be {0, 1}n.

1

https://dropbox.cs.princeton.edu/COS433_S2018/HW2


(c) Encc(k,m) = Enc (k, (m, r)). Here, the message space for Encc is {0, 1}n/2, r is
a random n/2-bit message, and (m, r) is the concatenation of m and r.

(d) Encd(k,m) = Enc(k,m)⊕ Enc(k, 0n).

(e) Ence(k,m) =
(
Enc(k,m),Enc(k,m⊕ 1n

)
. That is encrypt under Enc, and then

encrypt the bitwise complement under m.

2 Problem 2 (15 points)

Suppose PRG is a (t, ε)-secure PRG with input length λ and output length 3λ. Which
of the following are secure PRGs. If it is a secure PRG, prove it using a reduction,
and give the appropriate (t′, ε′) parameters. If not, demonstrate why it is not a secure
PRG (this could either be because it is not secure, or because it does not satisfy the
semantics of a PRG). If there are more than one reason why it is not a secure PRG,
demonstrate both.

(a) PRGa(s) = PRG(s)[1,2λ]. That is, run PRG, delete the last λ bits, and output
the first 2λ.

(b) PRGb(r, s) = (r,PRG(s)). Here, r, s are λ bits, and PRGb has input length 2λ
and output length 4λ.

(c) PRGc(s) = (r,PRG(s)). Here, r, s are λ bits, and PRG is a probabilistic algo-
rithm that choose a fresh r for each invocation.

(d) PRGd(s) = (s,PRG(s)).

(e) PRGe(s) = PRG(PRG0(s)),PRG(PRG1(s)),PRG(PRG2(s)). Here, PRG0(s) rep-
resents the first λ bits of the output of PRGs, PRG1(s) the second λ bits, and
PRG2(s) the final λ bits.

3 Problem 3 (10 points)

Let PRG be a pseudorandom generator. Consider the following attempt at building
a stateless many-use encryption scheme. Enc(k,m) chooses a random string IV of
length λ (here, λ is the length of the key), and then runs x ← PRG(IV, k) (that is,
run PRG on the string obtained by concatenating IV and k). Finally, it computes
c ← x ⊕ m. The ciphertext is the pair (IV, c). Dec(k, (IV, c)) uses IV and k to
compute x, and XORs x and c to recover m.

Devise an example of a PRG PRG such that the above encryption scheme using PRG
is insecure even for a single message. That is, PRG should satisfy the definition of a

2



secure PRG, but Enc should not satisfy ciphertext indistinguishability for any small
ε.

You may assume as a building block a secure pseudorandom generator PRG′, which
you can use to build your PRG. Your construction must work (that is, yield an
insecure encryption scheme) for any PRG′, as long as PRG′ is a secure PRG; do not
assume any particular structure on PRG′. Remember to prove the security of PRG
assuming the security of PRG′ using a reduction.

4 Problem 4 (20 points)

Give efficient attacks on each of the following candidate PRG constructions.

You should not need a computer to solve any of these problems. You can use a
computer if it helps, but you should be able to demonstrate your attack works without
resorting to any code. So for example, if the second byte of output is biased towards
0, you should be able to explain why this is the case by using the description of the
function (so something like “If event A happens, then the second byte is 0. For a
random initial state, event A happens with probability 2/256”). Empirical evidence is
not sufficient (so “I ran 1,000,000 tests and this is what I found” is not an acceptable
answer).

(a) PRGa is a LFSR on 256-bit inputs. The feedback is the XOR of the 2nd, 27th,
168th, and 220th bits of the state. In order to introduce non-linearity, the
output is the AND of the last two bits of state.

(b) PRGb is a LFSR on 256-bit inputs, except that only steps that are multiples of
100 give an output. For all the steps in between, the last bit of state is just
discarded without being outputted. The idea is that the initial state will no
longer be the first 256 bits of output.

(c) PRGc is a LFSR on 129-bit inputs, except the feedback mechanism has been
made non-linear. The feedback is the first bit of the output of RC4 applied to
the last 128-bits of state (all bits but the first).

(d) PRGd is a LFSR on 256-bit inputs, except for the following changes. First, the
feedback mechanism has been made non-linear and is (x2ANDx168)⊕(x27ANDx220),
where xi is the ith bit of the current state. Second, only steps that are multiples
of 100 produce outputs; all the steps in between just have the last bit of state
discarded without being outputted.

(e) PRGe is defined as follows.

3



– The state is a permutation on 256 elements and two counters i, j, just like
RC4. The permutation is stored as an array S.

– The input is a 128-bit seed, just like RC4, and the state is initialized based
on the seed as in RC4

– To produce the next output and update the state, do the following:

∗ Let i = i+ 1 mod 256. Let j = j + S[i] mod 256

∗ Rotate the array S to the right by 17 positions. That is, let S[`] =
S[`− 17 mod 256] for all `.

∗ The new state is the new values for i, j, and S. The output is

S[S[i] + S[j] mod 256]

Note that for this problem, since this function is different than RC4, you cannot
assume anything based on known weaknesses of RC4. Instead, any anomalies
you find you must prove yourself.

(f) PRGf is defined as follows.

– The state is a permutation on 256 elements. The permutation is stored as
an array S.

– The input is a 128-bit seed, just like RC4, and the state is initialized
based on the seed as in RC4 (notice that initializing RC4 also outputs two
counters that are set to 0, we will discard these)

– To produce the next output and update the state, do the following:

∗ The next output byte is S[0]

∗ To update the state, do the following. Compute

i = S[S[0] + S[S[0]] mod 256]

If i = 0, shift S to the left by 1 (so S[0] becomes S[1], etc). Otherwise,
swap the contents of S[0] and S[i].

Again, since this function is different than RC4, you cannot assume anything
based on known weaknesses of RC4. Instead, any anomalies you find you must
prove yourself.

4


	Problem 1 (15 points)
	Problem 2 (15 points)
	Problem 3 (10 points)
	Problem 4 (20 points)

